Experimental Modeling of Convection Downstream from an Electronic Package Row

1989 ◽  
Vol 111 (3) ◽  
pp. 207-212 ◽  
Author(s):  
R. A. Wirtz ◽  
W. McAuliffe

Experiments on convective heat transfer in the wake of a row of closely spaced pin-mount packages are reported. Flow visualization and interferometric heat transfer measurements are made in an induced draft wind tunnel where the package row is modeled with a two-dimensional transverse rib attached to one channel wall. The transverse rib has an aspect ratio of 5.25:1.0, and the channel height-to-rib height ratio is 4.0:1.0. Results are reported for coolant Reynolds numbers ranging from 1000 to 4000. Flow visualization shows the wake region to be similar to flow past a simple back step. Recirculating flow is found to extend from nine to three rib heights downstream from the rib, depending on the magnitude of the flow Reynolds number. Local heat transfer within this region is reduced relative to what would occur in the absence of the transverse rib, with average values of the heat transfer coefficient bracketed between laminar and turbulent correlations for simple back steps. Heat transfer rates further downstream, after reattachment of the flow, are in excess of those expected for flow with no transverse rib.

1967 ◽  
Vol 89 (2) ◽  
pp. 163-167 ◽  
Author(s):  
E. G. Filetti ◽  
W. M. Kays

Experimental data are presented for local heat transfer rates near the entrance to a flat duct in which there is an abrupt symmetrical enlargement in flow cross section. Two enlargement area ratios are considered, and Reynolds numbers, based on duct hydraulic diameter, varied from 70,000 to 205,000. It is found that such a flow is characterized by a long stall on one side and a short stall on the other. Maximum heat transfer occurs in both cases at the point of reattachment, followed by a decay toward the values for fully developed duct flow. Empirical equations are given for the Nusselt number at the reattachment point, correlated as functions of duct Reynolds number and enlargement ratio.


Author(s):  
J. Lepicovsky ◽  
T. J. Bencic

Application of thin-film thermocouples and temperature sensitive paint to surface temperature and heat transfer rate measurement on a flat plate with internal cooling is described in this paper. The test arrangement was designed to model flow and heat transfer conditions in terms of gas (external) and coolant (internal) Reynolds numbers that are typical for cooled turbine components. The test article is geometrically simple; however, from the heat transfer point of view it represents a fairly complex case. For both flows, internal and external, the hydrodynamic boundary layers start well ahead of the thermal boundary layers. The thermally active surface is preceded by an adiabatic starting length. Also, the heat transfer occurs under nonisothermal wall conditions and nonuniform heat flux conditions. The heat transfer experiments were carried out for a range of Mach number and Reynolds number on the gas side from 0.17 to 0.53 and from 135 000 to 580 000, respectively. On the coolant side, the corresponding ranges were from 0.3 to 0.52 for the flow Mach number, and from 20 000 to 65 000 for the Reynolds number. Measured bulk heat transfer rates demonstrated expected trends as functions of external (gas) and internal (coolant) Reynolds numbers. Local heat transfer rates measured along the mid-span line behaved as expected in relation to the internal (coolant) Reynolds number. However, they seem to be insensitive to changes in the external (gas) Reynolds number — at least for the particular test arrangement. Local heat transfer rates, however, strongly depend on the location with respect to the width of the cooling passage. These results were not expected; they may be caused by three dimensional nature of heat convection and conduction in this test arrangement.


1993 ◽  
Vol 17 (2) ◽  
pp. 145-160
Author(s):  
P.H. Oosthuizen ◽  
A. Sheriff

Indirect passive solar crop dryers have the potential to considerably reduce the losses that presently occur during drying of some crops in many parts of the “developing” world. The performance so far achieved with such dryers has, however, not proved to be very satisfactory. If this performance is to be improved it is necessary to have an accurate computer model of such dryers to assist in their design. An important element is any dryer model is an accurate equation for the convective heat transfer in the collector. To assist in the development of such an equation, an experimental and numerical study of the collector heat transfer has been undertaken. In the experimental study, the collector was simulated by a 1m long by 1m wide channel with a gap of 4 cm between the upper and lower surfaces. The lower surface of the channel consisted of an aluminium plate with an electrical heating element, simulating the solar heating, bonded to its lower surface. Air was blown through this channel at a measured rate and the temperature profiles at various points along the channel were measured using a shielded thermocouple probe. Local heat transfer rates were then determined from these measured temperature profiles. In the numerical study, the parabolic forms of the governing equations were solved by a forward-marching finite difference procedure.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Akhilesh P. Rallabandi ◽  
Huitao Yang ◽  
Je-Chin Han

Systematic experiments are conducted to measure heat transfer enhancement and pressure loss characteristics on a square channel (simulating a gas turbine blade cooling passage) with two opposite surfaces roughened by 45 deg parallel ribs. Copper plates fitted with a silicone heater and instrumented with thermocouples are used to measure regionally averaged local heat transfer coefficients. Reynolds numbers studied in the channel range from 30,000 to 400,000. The rib height (e) to hydraulic diameter (D) ratio ranges from 0.1 to 0.18. The rib spacing (p) to height ratio (p/e) ranges from 5 to 10. Results show higher heat transfer coefficients at smaller values of p/e and larger values of e/D, though at the cost of higher friction losses. Results also indicate that the thermal performance of the ribbed channel falls with increasing Reynolds numbers. Correlations predicting Nusselt number (Nu) and friction factor (f¯) as a function of p/e, e/D, and Re are developed. Also developed are correlations for R and G (friction and heat transfer roughness functions, respectively) as a function of the roughness Reynolds number (e+), p/e, and e/D.


1987 ◽  
Vol 109 (1) ◽  
pp. 43-48 ◽  
Author(s):  
J. W. Baughn ◽  
H. Iacovides ◽  
D. C. Jackson ◽  
B. E. Launder

The paper reports extensive connective heat transfer data for turbulent flow of air around a U-bend with a ratio of bend radius:pipe diameter of 3.375:1. Experiments cover Reynolds numbers from 2 × 104 to 1.1 × 105. Measurements of local heat transfer coefficient are made at six stations and at five circumferential positions at each station. At Re = 6 × 104 a detailed mapping of the temperature field within the air is made at the same stations. The experiment duplicates the flow configuration for which Azzola and Humphrey [3] have recently reported laser-Doppler measurements of the mean and turbulent velocity field. The measurements show a strong augmentation of heat transfer coefficient on the outside of the bend and relatively low levels on the inside associated with the combined effects of secondary flow and the amplification/suppression of turbulent mixing by streamline curvature. The peak level of Nu occurs halfway around the bend at which position the heat transfer coefficient on the outside is about three times that on the inside. Another feature of interest is that a strongly nonuniform Nu persists six diameters downstream of the bend even though secondary flow and streamline curvature are negligible there. At the entry to the bend there are signs of partial laminarization on the inside of the bend, an effect that is more pronounced at lower Reynolds numbers.


2001 ◽  
Author(s):  
Lamyaa A. El-Gabry ◽  
Deborah A. Kaminski

Abstract Measurements of the local heat transfer distribution on smooth and roughened surfaces under an array of angled impinging jets are presented. The test rig is designed to simulate impingement with cross-flow in one direction which is a common method for cooling gas turbine components such as the combustion liner. Jet angle is varied between 30, 60, and 90 degrees as measured from the impingement surface, which is either smooth or randomly roughened. Liquid crystal video thermography is used to capture surface temperature data at five different jet Reynolds numbers ranging between 15,000 and 35,000. The effect of jet angle, Reynolds number, gap, and surface roughness on heat transfer efficiency and pressure loss is determined along with the various interactions among these parameters. Peak heat transfer coefficients for the range of Reynolds number from 15,000 to 35,000 are highest for orthogonal jets impinging on roughened surface; peak Nu values for this configuration ranged from 88 to 165 depending on Reynolds number. The ratio of peak to average Nu is lowest for 30-degree jets impinging on roughened surfaces. It is often desirable to minimize this ratio in order to decrease thermal gradients, which could lead to thermal fatigue. High thermal stress can significantly reduce the useful life of engineering components and machinery. Peak heat transfer coefficients decay in the cross-flow direction by close to 24% over a dimensionless length of 20. The decrease of spanwise average Nu in the crossflow direction is lowest for the case of 30-degree jets impinging on a roughened surface where the decrease was less than 3%. The decrease is greatest for 30-degree jet impingement on a smooth surface where the stagnation point Nu decreased by more than 23% for some Reynolds numbers.


1992 ◽  
Vol 114 (1) ◽  
pp. 115-120 ◽  
Author(s):  
B. W. Webb ◽  
T. L. Bergman

Natural convection in an enclosure with a uniform heat flux on two vertical surfaces and constant temperature at the adjoining walls has been investigated both experimentally and theoretically. The thermal boundary conditions and enclosure geometry render the buoyancy-induced flow and heat transfer inherently three dimensional. The experimental measurements include temperature distributions of the isoflux walls obtained using an infrared thermal imaging technique, while the three-dimensional equations governing conservation of mass, momentum, and energy were solved using a control volume-based finite difference scheme. Measurements and predictions are in good agreement and the model predictions reveal strongly three-dimensional flow in the enclosure, as well as high local heat transfer rates at the edges of the isoflux wall. Predicted average heat transfer rates were correlated over a range of the relevant dimensionless parameters.


Author(s):  
Jared M. Pent ◽  
Jay S. Kapat ◽  
Mark Ricklick

This paper examines the local and averaged endwall heat transfer effects of a staggered array of porous aluminum pin fins with a channel blockage ratio (blocked channel area divided by open channel area) of 50%. Two sets of pins were used with pore densities of 0 (solid) and 10 pores per inch (PPI). The pressure drop through the channel was also determined for several flow rates using each set of pins. Local heat transfer coefficients on the endwall were measured using Thermochromatic Liquid Crystal (TLC) sheets recorded with a charge-coupled device (CCD) camera. Static and total pressure measurements were taken at the entrance and exit of the test section to determine the overall pressure drop through the channel and explain the heat transfer trends through the channel. The heat transfer and pressure data was then compared to flow visualization tests that were run using a fog generator. Results are presented for the two sets of pins with Reynolds numbers between 25000 and 130000. Local HTC (heat transfer coefficient) profiles as well as spanwise and streamwise averaged HTC plots are displayed for both pin arrays. The thermal performance was calculated for each pin set and Reynolds number. All experiments were carried out in a channel with an X/D of 1.72, a Y/D of 2.0, and a Z/D of 1.72.


2021 ◽  
Author(s):  
Karan Anand

This research provides a computational analysis of heat transfer due to micro jet-impingement inside a gas turbine vane. A preliminary-parametric analysis of axisymmetric single jet was reported to better understand micro jet-impingement. In general, it was seen that as the Reynolds number increased the Nusselt number values increased. The jet to target spacing had a considerably lower impact on the heat transfer rates. Around 30% improvement was seen by reducing the diameter to half while changing the shape to an ellipse saw 20.8% improvement in Nusselt value. The numerical investigation was then followed by studying the heat transfer characteristics in a three-dimensional, actual-shaped turbine vane. Effects of jet inclination showed enhanced mixing and secondary heat transfer peaks. The effect of reducing the diameter of the jets to 0.125 mm yielded 55% heat transfer improvements compared to 0.51 mm; the tapering effect also enhanced the local heat transfer values as local velocities at jet exit increased.


Sign in / Sign up

Export Citation Format

Share Document