Stress Concentration Factors in T and K-T Tubular Joints Using Finite Element Analysis

1988 ◽  
Vol 110 (4) ◽  
pp. 246-254 ◽  
Author(s):  
O. D. Dijkstra ◽  
R. S. Puthli ◽  
H. H. Snijder

Stress concentration factors (SCFs) in a T and a K-T tubular joint have been determined using the finite element method (FEM). The SCFs are determined for basic load cases (axial load or bending moment) in one of the braces or in the chord. The results of the FEM are compared with available experimental data and with parametric formulas. The T-joint results for brace loadings agree reasonably with the parametric formulas. The K-T joint results for in-plane bending agree reasonably with the parametric formulas.

2007 ◽  
Vol 353-358 ◽  
pp. 1995-1998
Author(s):  
Byeong Choon Goo

The purpose of this paper is to develop an estimation formula of stress concentration factors of butt-welded components under tensile loading. To investigate the influence of weld bead profiles on stress concentration factors of double V groove butt-welded joints, butt-welded specimens were made by CO2 gas metal arc welding. And the three main parameters, the toe radius, flank angle and bead height were measured by a profile measuring equipment. By using the measured data, the influence of three parameters on the stress concentration factors was investigated by a finite element analysis. It is shown that the three parameters have similar effects on the stress concentration factors. According to the simulation results, a formula to estimate the stress concentration factors of butt-weld welded structures was proposed and the estimated concentration factors from the formula were compared with the results obtained by the finite element analysis. The two results are in a good agreement.


2021 ◽  
pp. 136943322110499
Author(s):  
Feleb Matti ◽  
Fidelis Mashiri

This paper investigates the behaviour of square hollow section (SHS) T-joints under static axial tension for the determination of stress concentration factors (SCFs) at the hot spot locations. Five empty and corresponding concrete-filled SHS-SHS T-joint connections were tested experimentally and numerically. The experimental investigation was carried out by attaching strain gauges onto the SHS-SHS T-joint specimens. The numerical study was then conducted by developing three-dimensional finite element (FE) T-joint models using ABAQUS finite element analysis software for capturing the distribution of the SCFs at the hot spot locations. The results showed that there is a good agreement between the experimental and numerical SCFs. A series of formulae for the prediction of SCF in concrete-filled SHS T-joints under tension were proposed, and good agreement was achieved between the maximum SCFs in SHS T-joints calculated from FE T-joint models and those from the predicted formulae.


Author(s):  
Carlos A. Pereira ◽  
Paulo P. Silva ◽  
Anto´nio F. Mateus ◽  
Joel A. Witz

This paper presents the results of investigations into the mechanics and failure modes of structural details usually encountered in lightweight marine structures. The structural analyses are performed using non-linear finite element analysis. The stress concentration factors and expected fatigue lives of the as designed and the as built structural details are evaluated and alternative configurations are discussed with the aim of improving the designs for production.


1970 ◽  
Vol 40 (2) ◽  
pp. 137-141
Author(s):  
R. Nagendra Babu ◽  
K. V. Ramana ◽  
K. Mallikarjuna Rao

Stress Concentration Factors are significant in machine design as it gives rise to localized stress when any change in the design of surface or abrupt change in the cross section occurs. Almost all machine components and structural members contain some form of geometrical or microstructural discontinuities. These discontinuities are very dangerous and lead to failure. So, it is very much essential to analyze the stress concentration factors for critical applications like Turbine Rotors. In this paper Finite Element Analysis (FEA) with extremely fine mesh in the vicinity of the blades of Steam Turbine Rotor is applied to determine stress concentration factors.Keywords: Stress Concentration Factors; FiniteElement Analysis; ANSYS.DOI: 10.3329/jme.v40i2.5355Journal of Mechanical Engineering, Vol. ME 40, No. 2, December 2009 137-141


1988 ◽  
Vol 110 (2) ◽  
pp. 85-92 ◽  
Author(s):  
T. Sato ◽  
S. Sano ◽  
K. Ishikawa ◽  
T. Nakano

Finite element analyses were conducted of the threaded marine riser connector which has the main, internal, and external shoulder seals. The objectives of the analyses are to evaluate the fatigue resistance, strength, and seal capability of the connector under the bending, tensile, internal and external pressure loads. An element which models the bending effect in an axisymmetric body is developed and implemented into the computer program ADINA. Using the program, stress concentration factors at the corner and threaded parts of the connector under these loads are obtained. The large contribution of both shoulders to the reduction of the stress concentration factors is found to be quite clear. The seal mechanism and the stress response of the connectors are also clarified. The fatigue evaluation based on ASME Boiler and Pressure Vessel Code, Sec. III, Rules for Construction of Nuclear Power Plant Components, Division 1, Subsection NB are compared with the experimental results.


1994 ◽  
Vol 116 (2) ◽  
pp. 49-55 ◽  
Author(s):  
A. K. Soh ◽  
C. K. Soh

A parametric stress analysis of DT/X square-to-square and square-to-round tubular joints subjected to axial loads, in-plane, and out-of-plane bending moments has been performed using the finite element technique in order to provide a sound basis for using such sections in the design of complex structures. The results of this analysis are presented as a set of equations expressing the stress concentration factor as a function of the relevant geometric parameters for various loading conditions. A comparison is made between the results obtained for square-to-square and square-to-round tubular joints and those obtained for round-to-round tubular joints by other researchers. In general, the stress concentration factors for square-to-square tubular joints are the highest, followed by those of the corresponding round-to-round joints, with those of the corresponding square-to-round joints the lowest when the joints are subject to axial loads. In the case of in-plane bending moment, the stress concentration factors for square-to-square joints are generally still the highest, but followed by those of the corresponding square-to-round joints, with those of the corresponding round-to-round joints the lowest. However, the stress concentration factors for the three types of joint are comparable when they are subject to out-of-plane bending moments.


2004 ◽  
Vol 126 (2) ◽  
pp. 184-187 ◽  
Author(s):  
Ricky D. Dixon ◽  
Daniel T. Peters ◽  
Jan G. M. Keltjens

The purpose of this paper is to investigate the stress concentration in stress fields around crossbores for closed-end thick-walled square blocks and cylindrical shells using the finite element method. These stress concentration factors are presented and discussed as a function of the ratio of crossbore radius to the cylinder internal radius (HR/Ri=0.01 to 0.7) for a range of wall ratios (Y=1.5 to 5). Charts and simple expressions are provided for ease of use.


2021 ◽  
pp. 1-12
Author(s):  
Andreas Teigland ◽  
Bjørn Brechan ◽  
Stein Inge Dale ◽  
Sigbjørn Sangesland

Summary As wells in modern operations are getting longer and more complex, assessing the effect of casing wear becomes ever more crucial. Degradation of the tubulars through mechanical wear reduces the pressure capacity significantly. In this paper, we use the finite element method (FEM) to analyze the stress distribution in degraded geometries and to assess reduction in collapse strength. A model for the collapse strength of the casing with a crescent-shaped wear groove is developed and its performance evaluated in relation to experimental data. The model was created by using the Buckingham Pi theorem to make generalized empirical expressions for yield and elastic collapse of tubulars. Finite element analysis (FEA) of 135 geometries was used in the development of the model. The results show that the generalized expressions capture the trends observed in the FEA accurately and match the experimental data from six tubular collapse tests with an average relative difference in collapse pressure of 5.2%.


Sign in / Sign up

Export Citation Format

Share Document