Stress Concentration Factors of Cross-Bores in Thick Walled Cylinders and Blocks

2004 ◽  
Vol 126 (2) ◽  
pp. 184-187 ◽  
Author(s):  
Ricky D. Dixon ◽  
Daniel T. Peters ◽  
Jan G. M. Keltjens

The purpose of this paper is to investigate the stress concentration in stress fields around crossbores for closed-end thick-walled square blocks and cylindrical shells using the finite element method. These stress concentration factors are presented and discussed as a function of the ratio of crossbore radius to the cylinder internal radius (HR/Ri=0.01 to 0.7) for a range of wall ratios (Y=1.5 to 5). Charts and simple expressions are provided for ease of use.

Author(s):  
Ricky D. Dixon ◽  
Daniel T. Peters ◽  
Jan G. M. Keltjens

The purpose of this paper is to investigate the stress concentration in stress fields around crossbores for closed-end thick-walled square blocks and cylindrical shells using the finite element method. These stress concentration factors are presented and discussed as a function of the ratio of crossbore radius to the cylinder internal radius (HR/Ri = 0.01 to 0.7) for a range of wall ratios (Y = 1.5 to 5). Charts and simple expressions are provided for ease of use.


1987 ◽  
Vol 22 (1) ◽  
pp. 1-6 ◽  
Author(s):  
R A Evans ◽  
S J Hardy ◽  
T H Hyde

The finite element method has here been used to determine stress concentration factors due to axial loading applied to axisymmetric, external projections on hollow tubes. A range of tube and projection dimensions have been covered by the investigation. There is good agreement between the present results and previously published data. The results are presented in a manner which allows stress concentration factors to be quickly determined, for any shape within the range covered by the investigation.


1988 ◽  
Vol 110 (4) ◽  
pp. 246-254 ◽  
Author(s):  
O. D. Dijkstra ◽  
R. S. Puthli ◽  
H. H. Snijder

Stress concentration factors (SCFs) in a T and a K-T tubular joint have been determined using the finite element method (FEM). The SCFs are determined for basic load cases (axial load or bending moment) in one of the braces or in the chord. The results of the FEM are compared with available experimental data and with parametric formulas. The T-joint results for brace loadings agree reasonably with the parametric formulas. The K-T joint results for in-plane bending agree reasonably with the parametric formulas.


Author(s):  
R E Cornwell

There are numerous situations in machine component design in which curved beams with cross-sections of arbitrary geometry are loaded in the plane of curvature, i.e. in flexure. However, there is little guidance in the technical literature concerning how the shear stresses resulting from out-of-plane loading of these same components are effected by the component's curvature. The current literature on out-of-plane loading of curved members relates almost exclusively to the circular and rectangular cross-sections used in springs. This article extends the range of applicability of stress concentration factors for curved beams with circular and rectangular cross-sections and greatly expands the types of cross-sections for which stress concentration factors are available. Wahl's stress concentration factor for circular cross-sections, usually assumed only valid for spring indices above 3.0, is shown to be applicable for spring indices as low as 1.2. The theory applicable to the torsion of curved beams and its finite-element implementation are outlined. Results developed using the finite-element implementation agree with previously available data for circular and rectangular cross-sections while providing stress concentration factors for a wider variety of cross-section geometries and spring indices.


2007 ◽  
Vol 353-358 ◽  
pp. 1995-1998
Author(s):  
Byeong Choon Goo

The purpose of this paper is to develop an estimation formula of stress concentration factors of butt-welded components under tensile loading. To investigate the influence of weld bead profiles on stress concentration factors of double V groove butt-welded joints, butt-welded specimens were made by CO2 gas metal arc welding. And the three main parameters, the toe radius, flank angle and bead height were measured by a profile measuring equipment. By using the measured data, the influence of three parameters on the stress concentration factors was investigated by a finite element analysis. It is shown that the three parameters have similar effects on the stress concentration factors. According to the simulation results, a formula to estimate the stress concentration factors of butt-weld welded structures was proposed and the estimated concentration factors from the formula were compared with the results obtained by the finite element analysis. The two results are in a good agreement.


1983 ◽  
Vol 18 (1) ◽  
pp. 7-14 ◽  
Author(s):  
T H Hyde ◽  
B J Marsden

The finite element method has been used to investigate the behaviour of axisymmetric loaded projections (e.g., bolts) subjected to axial tension and bending. The results show that existing data for stepped shafts, which have the axial tension and bending loads applied remote from the region of the step, cannot be applied to loaded projections with the same geometry. For h/d (head thickness to shank diameter ratio) values greater than 0.66 and 0.41 for axial tension and bending, respectively, the stress concentration factors are independent of h/d, load position, and D/d (head diameter to shank diameter ratio) for D/d in the range 1.5 ≤ D/d ≤ 2.0. Smaller h/d values result in large increases in the stress concentration factors due to dishing of the head.


2021 ◽  
pp. 136943322110499
Author(s):  
Feleb Matti ◽  
Fidelis Mashiri

This paper investigates the behaviour of square hollow section (SHS) T-joints under static axial tension for the determination of stress concentration factors (SCFs) at the hot spot locations. Five empty and corresponding concrete-filled SHS-SHS T-joint connections were tested experimentally and numerically. The experimental investigation was carried out by attaching strain gauges onto the SHS-SHS T-joint specimens. The numerical study was then conducted by developing three-dimensional finite element (FE) T-joint models using ABAQUS finite element analysis software for capturing the distribution of the SCFs at the hot spot locations. The results showed that there is a good agreement between the experimental and numerical SCFs. A series of formulae for the prediction of SCF in concrete-filled SHS T-joints under tension were proposed, and good agreement was achieved between the maximum SCFs in SHS T-joints calculated from FE T-joint models and those from the predicted formulae.


1999 ◽  
Vol 21 (2) ◽  
pp. 116-128
Author(s):  
Pham Thi Toan

In the present paper, the goffered multilayered composite cylindrical shells is directly calculated by finite element method. Numerical results on displacements, internal forces and moments are obtained for various kinds of external loads and different boundary conditions.


Author(s):  
Carlos A. Pereira ◽  
Paulo P. Silva ◽  
Anto´nio F. Mateus ◽  
Joel A. Witz

This paper presents the results of investigations into the mechanics and failure modes of structural details usually encountered in lightweight marine structures. The structural analyses are performed using non-linear finite element analysis. The stress concentration factors and expected fatigue lives of the as designed and the as built structural details are evaluated and alternative configurations are discussed with the aim of improving the designs for production.


Sign in / Sign up

Export Citation Format

Share Document