scholarly journals Experimental and Analytical Investigation on the Variation of Spray Characteristics Along Radial Distance Downstream of a Pressure Swirl Atomizer

1986 ◽  
Vol 108 (3) ◽  
pp. 473-478 ◽  
Author(s):  
Y. H. Zhao ◽  
W. M. Li ◽  
J. S. Chin

The variation of spray characteristics (Sauter Mean Diameter and Rosin-Rammler drop-size distribution parameter) downstream of a pressure swirl atomizer along radial distance has been measured by laser light scattering technology. An analytical model has been developed that is capable of predicting the variation of spray characteristics along radial distance. A comparison between the prediction and experimental data shows excellent agreement. It shows that the spray model proposed, although relatively simple, is correct and can be used with some expansion and modification to predict more complicated spray systems.

Author(s):  
Arvind K. Jasuja ◽  
Arthur H. Lefebvre

A single-component PDPA is used to evaluate the spray characteristics of a simplex pressure-swirl atomizer when operating at high liquid flow rates and elevated ambient air pressures. Attention is focused on the effects of air pressure on mean drop size, drop-size distribution, mean velocity, volume flux, and number density. Using a constant flow rate of 75 g/s, measurements are carried out along the spray radii at a fixed distance downstream from the atomizer face of 50 mm. The air pressures of 1, 8, and 12 bars chosen for these tests correspond to air densities of 1.2, 9.6, and 14.4 kg/m3. The purpose of the investigation is to supplement the existing body of information on pressure-swirl spray characteristics, most of which were obtained at normal atmospheric ambient pressures, with new data that correspond more closely to the conditions prevailing in the primary combustion zones of modern gas turbines. The results obtained are explained mainly in terms of the influence of air pressure on spray structure, in particular spray cone angle and Weber number.


Author(s):  
Xiongjie Fan ◽  
Cunxi Liu ◽  
Yong Mu ◽  
Haitao Lu ◽  
Jinhu Yang ◽  
...  

Spray characteristics of a pressure-swirl atomizer are investigated using high-speed shadowgraph technique under different pressure drops (Δ P) and fuel temperatures ( T). An image processing method is developed using MATLAB. The results illustrate that the mass flow rate climbs with the increase of Δ P, while the discharge coefficient ( Cd) decreases firstly and then climbs with the increase of Δ P. Δ P has larger effect on the cone angle relative to fuel temperature. With the increase of Δ P, the shape of liquid film changes from ‘onion’ to ‘tulip’ and finally be fully developed spray cone. Meanwhile, the surface of liquid film becomes smoother with the increase of Δ P. The average breakup length climbs, then decreases to nearly a constant value with the increase of Δ P, which is induced by the “Impact wave,” surface wave, and turbulent energy. There are little differences on the shape of the liquid film under different temperatures, and temperature has different influence on breakup length under different Δ P. Both the fuel temperature and Δ P have significant impact on the surface wavelength ( λ) and velocities ( U, V) of surface wave. The width of fuel stream becomes larger with the increase of Δ P and fuel temperature. The results can further deepen the understanding of spray characteristics of pressure-swirl atomizer.


Author(s):  
D Mondal ◽  
A Datta ◽  
A Sarkar

Drop size distribution is an important characterizing parameter of a spray. In the present work a theoretical model has been described, based on the maximum entropy formalism principle, for the determination of the drop size distribution in a spray issued from a pressure swirl atomizer. The atomization efficiency is also derived from the model, assuming the velocities of all the drop sizes to be uniform. The results show that the drop size distribution, described from the present model, resembles the Rosin-Rammler type distribution very well, with a dispersion parameter of 3.47. The atomization efficiency is found to decrease with the increase in liquid mass flowrates, when the pressure differential across the atomizer remains the same. On the other hand, an increase in the orifice diameter increases the atomization efficiency, when the liquid mass flow rate and pressure differential are the same. The ratio of the surface energy to the kinetic energy at the atomizer exit is seen to influence the atomization efficiency.


2021 ◽  
Vol 30 (2) ◽  
pp. 729-741
Author(s):  
Kaixing Wang ◽  
Xiongjie Fan ◽  
Fuqiang Liu ◽  
Cunxi Liu ◽  
Haitao Lu ◽  
...  

Author(s):  
Andrew C. S. Lee ◽  
Paul E. Sojka

An experimental study was conducted to characterize the performance of a hybrid atomizer used in emission control devices. Characterization included drop size distribution, measured using a forward light-scattering instrument, the air flow field (axial and radial velocities), measured using 2-D PIV, and turbulence characteristics of the air flow field, measured using LDA. The air flow field showed characteristics common to turbulent free round jets beyond approximately 8 exit orifice diameters from the atomizer exit plane. The centerline velocity increased with an increase in mass flow rate, while radial velocities were two orders of magnitude smaller than centerline values. The jet spreading factor initially increased with an increase in axial distance from the exit; however, it stabilized at a value of 0.09 at z/Do=11.8. Turbulence intensity along the jet centerline stabilized at 25% at z/Do=7.9. Drop size data showed complex dependencies on liquid and air mass flow rates, and on internal geometry. The influence of liquid mass flow rate on drop size was significantly smaller for the hybrid atomizer than for the pressure swirl atomizer component housed inside the hybrid unit, thus indicating a higher turndown ratio for the hybrid device. Drop size distributions produced by the hybrid atomizer showed multiple peaks, indicating there is more than one important atomizing mechanism. Finally, reducing the gap between the pressure-swirl atomizer and the exit plane of the outer casing resulted in a reduction in drop size.


Author(s):  
Saurabh Dikshit ◽  
Salim Channiwala ◽  
Digvijay Kulshreshtha ◽  
Kamlesh Chaudhari

The process of atomization is one in which a liquid jet or sheet is disintegrated by the kinetic energy of the liquid itself, or by exposure to high velocity air or gas, or as a result of mechanical energy applied externally. Combustion of liquid fuels in engines and industrial furnaces is dependent on effective atomization to increase the specific surface area of the fuel and thereby achieve high rate of mixing and evaporation. The pressure swirl atomizer is most common type atomizer used for combustion in gas turbine engines and industrial furnaces. The spray penetration is of prime importance for combustion designs. Over penetration of the spray leads to impingement of the fuel on walls of furnaces and combustors. On the other hand, if spray penetration is inadequate, fuel–air mixing is unsatisfactory. Optimum engine performance is obtained when the spray penetration is matched to the size and geometry of combustors. Methods for calculating penetration are therefore essential to sound engine design. Equally important are the spray cone angles and the drop size distribution in the sprays. An attempt is being made to experimentally investigate pressure swirl atomizer performance parameters such as spray cone angle, penetration length and drop size at different injection pressures ranging from 6 bar to 18 bar.


Author(s):  
Wei Xiao ◽  
Yong Huang

In this study, experiments have been performed to investigate effects of pressure-swirl atomizer geometry on SMD. Different pressure-swirl atomizers were applied to study the effect of geometry on the SMD. Based on the experimental results, an empirical correlation was obtained to relate SMD with the Weber number characterized by film thickness. Meanwhile, a semi-empirical model which was improved from the surface wave breakup theory was established to predict the SMD of pressure-swirl atomizers. The model provides the droplet diameter as a function of atomizer geometry, operation condition and liquid properties. It is proved that the model is qualified for predicting SMD of pressure-swirl atomizers among wide range.


Sign in / Sign up

Export Citation Format

Share Document