Dependence of Shock Characteristics on Droplet Size in Supersonic Two-Phase Mixtures

1980 ◽  
Vol 102 (1) ◽  
pp. 54-58 ◽  
Author(s):  
W. J. Comfort ◽  
C. T. Crowe

In a dispersed two-phase flow, the mixture chokes at a velocity well below the vapor choking velocity, as shown by the velocity at the throat of a converging-diverging, two-phase, supersonic nozzle. The formation and abruptness of a normal shock wave in a two-phase mixture depends strongly on the coupling between phases, particularly upon droplet size. As droplet size becomes small, the mixture behaves as a continuum, and sharp discontinuities can occur at velocities above the two-phase choking velocity but below the vapor sonic velocity. An approximate analysis is performed to incidate the droplet size at which continuum behavior might be expected to occur. A numerical model, which includes the drag, buoyancy, Basset force, and the force associated with the virtual mass effect, is used to show droplet-size dependence in two-phase normal shock waves. For the examples presented, continuum behavior apparently is approached at droplet diameters between 1 and 2 μm, even through normal shock waves.

Author(s):  
F Bakhtar ◽  
H Mashmoushy ◽  
O C Jadayel

In the course of expansion in turbines steam nucleates to become a two-phase mixture, the liquid consisting of a very large number of extremely small droplets carried by the vapour. Formation and subsequent behaviour of the liquid lowers the performance of turbine wet stages. To produce turbine nucleating and wet flow conditions realistically requires a supply of supercooled steam which can be achieved under blow-down conditions by the equipment employed. To obtain wet steam, the supercooled vapour generated is passed through a venturi before admission to the cascade. To evaluate the influence of droplet size two separate Venturis have been used in the investigation. The performance of a cascade of rotor tip section blading in wet steam has been studied. This paper is the second of a set and describes the results of the surface pressure measurements.


1978 ◽  
Vol 100 (3) ◽  
pp. 355-362 ◽  
Author(s):  
W. J. Comfort ◽  
T. W. Alger ◽  
W. H. Giedt ◽  
C. T. Crowe

A method for calculating quasi-one-dimensional, steady-state, two-phase dispersed droplet-in-vapor flow has been developed. The technique is applicable to both subsonic and supersonic single component flow in which normal shock waves may occur, and is the basis for a two-dimensional model. The flow is assumed to be inviscid except for droplet drag. Temperature and pressure equilibrium between phases is assumed, although this is not a requirement of the technique. Example calculations of flow in one-dimensional nozzles with and without normal shocks are given and compared with experimentally measured pressure profiles for both low quality and high quality two-phase steam-water flow.


1992 ◽  
Vol 241 ◽  
pp. 349-369 ◽  
Author(s):  
A. Guha

Closed-form analytical jump conditions across normal shock waves in pure vapour–droplet flows have been derived for different boundary conditions. They are equally applicable to partly and fully dispersed shock waves. Collectively they may be called the generalized Rankine–Hugoniot relations for wet vapour. A phase diagram is constructed which specifies the type of shock structure obtained in vapour–droplet flow given some overall parameters. It is shown that in addition to the partly and fully dispersed shock waves that are possible in any relaxing medium, there also exists a class of shock waves in wet vapour in which the two-phase relaxing medium reverts to a single-phase non-relaxing one. An analytical expression for the limiting upstream wetness fraction below which complete evaporation will take place inside a shock of specified strength has been deduced. A new theory has been formulated which shows that, depending on the upstream wetness fraction, a continuous transition exists for the shock velocity between its frozen and fully equilibrium values. The mechanisms of entropy production inside a shock are also discussed.


2014 ◽  
Vol 10 ◽  
pp. 27-31
Author(s):  
R.Kh. Bolotnova ◽  
U.O. Agisheva ◽  
V.A. Buzina

The two-phase model of vapor-gas-liquid medium in axisymmetric two-dimensional formulation, taking into account vaporization is constructed. The nonstationary processes of boiling vapor-water mixture outflow from high-pressure vessels as a result of depressurization are studied. The problems of shock waves action on filled by gas-liquid mixture volumes are solved.


Sign in / Sign up

Export Citation Format

Share Document