Closure to “Discussion of ‘Shear Layer Transition and the Sharp-Edged Orifice’” (1980, ASME J. Fluids Eng., 102, pp. 223–225)

1980 ◽  
Vol 102 (2) ◽  
pp. 225-225
Author(s):  
J. A. Clark ◽  
Lam Kit
Keyword(s):  
2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Chaoqun Liu ◽  
Ping Lu ◽  
Lin Chen ◽  
Yonghua Yan

This paper is a short review of our recent DNS work on physics of late boundary layer transition and turbulence. Based on our DNS observation, we propose a new theory on boundary layer transition, which has five steps, that is, receptivity, linear instability, large vortex structure formation, small length scale generation, loss of symmetry and randomization to turbulence. For turbulence generation and sustenance, the classical theory, described with Richardson's energy cascade and Kolmogorov length scale, is not observed by our DNS. We proposed a new theory on turbulence generation that all small length scales are generated by “shear layer instability” through multiple level ejections and sweeps and consequent multiple level positive and negative spikes, but not by “vortex breakdown.” We believe “shear layer instability” is the “mother of turbulence.” The energy transferring from large vortices to small vortices is carried out by multiple level sweeps, but does not follow Kolmogorov's theory that large vortices pass energy to small ones through vortex stretch and breakdown. The loss of symmetry starts from the second level ring cycle in the middle of the flow field and spreads to the bottom of the boundary layer and then the whole flow field.


2013 ◽  
Vol 729 ◽  
pp. 524-562 ◽  
Author(s):  
Prahladh S. Iyer ◽  
Krishnan Mahesh

AbstractDirect numerical simulation (DNS) is used to study laminar to turbulent transition induced by a discrete hemispherical roughness element in a high-speed laminar boundary layer. The simulations are performed under conditions matching the experiments of Danehy et al. (AIAA Paper 2009–394, 2009) for free-stream Mach numbers of 3.37, 5.26 and 8.23. It is observed that the Mach 8.23 flow remains laminar downstream of the roughness, while the lower Mach numbers undergo transition. The Mach 3.37 flow undergoes transition closer to the bump when compared with Mach 5.26, in agreement with experimental observations. Transition is accompanied by an increase in ${C}_{f} $ and ${C}_{h} $ (Stanton number). Even for the case that did not undergo transition (Mach 8.23), streamwise vortices induced by the roughness cause a significant rise in ${C}_{f} $ until 20$D$ downstream. The mean van Driest transformed velocity and Reynolds stress for Mach 3.37 and 5.26 show good agreement with available data. Temporal spectra of pressure for Mach 3.37 show that frequencies in the range of 10–1000 kHz are dominant. The transition process involves the following key elements: upon interaction with the roughness element, the boundary layer separates to form a series of spanwise vortices upstream of the roughness and a separation shear layer. The system of spanwise vortices wrap around the roughness element in the form of horseshoe/necklace vortices to yield a system of counter-rotating streamwise vortices downstream of the element. These vortices are located beneath the separation shear layer and perturb it, which results in the formation of trains of hairpin-shaped vortices further downstream of the roughness for the cases that undergo transition. These hairpins spread in the span with increasing downstream distance and the flow increasingly resembles a fully developed turbulent boundary layer. A local Reynolds number based on the wall properties is seen to correlate with the onset of transition for the cases considered.


1996 ◽  
Vol 118 (4) ◽  
pp. 752-759 ◽  
Author(s):  
E. Malkiel ◽  
R. E. Mayle

In the interest of being able to predict separating–reattaching flows, it is necessary to have an accurate model of transition in separation bubbles. An experimental investigation of the process of turbulence development in a separation bubble shows that transition occurs within the separated shear layer. A comparison of simultaneous velocity traces from comparison of simultaneous velocity traces from probes separated in the lateral direction suggests that Kelvin–Helmholtz waves, which originate in the laminar shear layer, do not break down to turbulence simultaneously across their span when they proceed to agglomerate. The streamwise development of intermittency in this region can be characterized by turbulent spot theory with a high dimensionless spot production rate. Moreover, the progression of intermittency along the centerline of the shear layer is similar to that in attached boundary layer transition. The transverse development of intermittency is also remarkably similar to that in attached boundary layers. The parameters obtained from these measurements agree with correlations previously deduced from turbulence intensity measurements.


1980 ◽  
Vol 102 (2) ◽  
pp. 219-222 ◽  
Author(s):  
J. A. Clark ◽  
Lam Kit

The present experiments provide information about free shear layer transition to turbulence and the associated three-dimensional behavior patterns of vortex growth and breakdown. The free shear layers of a submerged jet were generated from two-dimensional sharp-edged orifices. Two distinct types of growth patterns, namely, the twisting growth pattern and the interlocking growth pattern were observed. The interaction phenomena of these vortex tubes are hypothesized to be associated with mutual induction. Quantitative data of exit central velocity, pre-coalescent wavelength between consecutive vortices, and vortex shedding frequency were measured and the interrelationships of Strouhal number, Reynolds number and the dimensionless convection velocity of vortices are discussed.


2001 ◽  
Vol 439 ◽  
pp. 305-333 ◽  
Author(s):  
ZHIYIN YANG ◽  
PETER R. VOKE

Transition arising from a separated region of flow is quite common and plays an important role in engineering. It is difficult to predict using conventional models and the transition mechanism is still not fully understood. We report the results of a numerical simulation to study the physics of separated boundary-layer transition induced by a change of curvature of the surface. The geometry is a flat plate with a semicircular leading edge. The Reynolds number based on the uniform inlet velocity and the leading-edge diameter is 3450. The simulated mean and turbulence quantities compare well with the available experimental data.The numerical data have been comprehensively analysed to elucidate the entire transition process leading to breakdown to turbulence. It is evident from the simulation that the primary two-dimensional instability originates from the free shear in the bubble as the free shear layer is inviscidly unstable via the Kelvin–Helmholtz mechanism. These initial two-dimensional instability waves grow downstream with a amplification rate usually larger than that of Tollmien–Schlichting waves. Three-dimensional motions start to develop slowly under any small spanwise disturbance via a secondary instability mechanism associated with distortion of two-dimensional spanwise vortices and the formation of a spanwise peak–valley wave structure. Further downstream the distorted spanwise two-dimensional vortices roll up, leading to streamwise vorticity formation. Significant growth of three-dimensional motions occurs at about half the mean bubble length with hairpin vortices appearing at this stage, leading eventually to full breakdown to turbulence around the mean reattachment point. Vortex shedding from the separated shear layer is also observed and the ‘instantaneous reattachment’ position moves over a distance up to 50% of the mean reattachment length. Following reattachment, a turbulent boundary layer is established very quickly, but it is different from an equilibrium boundary layer.


2014 ◽  
Vol 760 ◽  
pp. 342-367 ◽  
Author(s):  
D. R. Getsinger ◽  
L. Gevorkyan ◽  
O. I. Smith ◽  
A. R. Karagozian

AbstractThis experimental study examines the relationship between transverse jet structural characteristics and the shear layer instabilities forming on the upstream side of the jet column. Jets composed of mixtures of helium and nitrogen were introduced perpendicularly into a low-speed wind tunnel using several alternative injectors: convergent circular nozzles mounted either flush with or elevated above the tunnel floor, and a flush-mounted circular pipe. Both non-intrusive optical diagnostics (planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV)) and intrusive probe-based (hot-wire anemometry) measurements were used to explore a range of jet-to-crossflow momentum flux ratios and density ratios for which previous studies have identified upstream shear layer transition from convective to absolute instability. Remarkable correspondences were identified between formation of the well-known counter-rotating vortex pair (CVP) associated with the jet cross-section and conditions producing strong upstream shear layer vorticity rollup, arising typically from absolute instability in the shear layer. In contrast, asymmetries in the jet mean cross-sectional shape and/or lack of a clear CVP were observed to correspond to weaker, convectively unstable jet shear layers.


Sign in / Sign up

Export Citation Format

Share Document