Laminar Wavy-Film Flow: Part II, Condensation and Evaporation

1982 ◽  
Vol 104 (3) ◽  
pp. 459-464 ◽  
Author(s):  
R. I. Hirshburg ◽  
L. W. Florschuetz

The Nusselt theory for laminar film condensation or evaporation is shown to significantly underpredict existing experimental data because of the presence of waves on the liquid-vapor interface. A heat transfer model is presented which incorporates the results of a previously developed hydrodynamic wavy-film model (Part I). Results based on the model for both local and mean Nusselt numbers are shown to be consistent with available experimental data, and to satisfactorily account for the deviation of the data from the classical Nusselt theory.

2011 ◽  
Vol 241 (7) ◽  
pp. 2544-2548 ◽  
Author(s):  
Dong Eok Kim ◽  
Ki Hoon Yang ◽  
Kyung Won Hwang ◽  
Young Ho Ha ◽  
Moo Hwan Kim

Author(s):  
Stefano Nebuloni ◽  
John R. Thome ◽  
Davide Del Col

A comparison of the recently proposed numerical model for annular laminar film condensation heat transfer in microchannels of different internal shapes (circular, square, rectangular, etc.), including the effects of conjugate heat conduction in the channel walls, is made versus recent independent experimental results experiencing this effect. Notably, the thinning of the condensate film induced by surface tension due to gravity forces and shape of the surface, also known as the ‘Grigorig’ effect, has a strong consequence on the local heat transfer coefficient in condensation. The model, which is based on a finite volume formulation of the Navier-Stokes and energy equations for the liquid phase only, accounts for the contributions of the surface tension, axial shear stresses and gravitational forces and for the conjugate effects of axial and peripheral wall conduction and nonuniform heat flux. The model was previously validated versus experimental data available in the literature without accounting for conjugate effects, predicting microchannel heat transfer data to within 20% or better. Specifically, the updated version of the model includes the coupling between the thin film fluid dynamics, the heat transfer in the condensing fluid and the heat conduction in the channel wall. Since it is imperative to demonstrate that numerical heat transfer models are accurate and reliable, the present paper focuses on validating this new conjugate model versus recent actual experimental data for various small channels and test fluids experiencing this effect. The results are very encouraging and are presented here.


2005 ◽  
Vol 128 (4) ◽  
pp. 412-418 ◽  
Author(s):  
Zhipeng Duan ◽  
Y. S. Muzychka

Impingement cooling of plate fin heat sinks is examined. Experimental measurements of thermal performance were performed with four heat sinks of various impingement inlet widths, fin spacings, fin heights, and airflow velocities. The percent uncertainty in the measured thermal resistance was a maximum of 2.6% in the validation tests. Using a simple thermal resistance model based on developing laminar flow in rectangular channels, the actual mean heat transfer coefficients are obtained in order to develop a simple heat transfer model for the impingement plate fin heat sink system. The experimental results are combined into a dimensionless correlation for channel average Nusselt number Nu∼f(L*,Pr). We use a dimensionless thermal developing flow length, L*=(L∕2)∕(DhRePr), as the independent parameter. Results show that Nu∼1∕L*, similar to developing flow in parallel channels. The heat transfer model covers the practical operating range of most heat sinks, 0.01<L*<0.18. The accuracy of the heat transfer model was found to be within 11% of the experimental data taken on four heat sinks and other experimental data from the published literature at channel Reynolds numbers less than 1200. The proposed heat transfer model may be used to predict the thermal performance of impingement air cooled plate fin heat sinks for design purposes.


1961 ◽  
Vol 83 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Michael Ming Chen

The boundary-layer equations for laminar film condensation are solved for (a) a single horizontal tube, and (b) a vertical bank of horizontal tubes. For the single-tube case, the inertia effects are included and the vapor is assumed to be stationary outside the vapor boundary layer. Velocity and temperature profiles are obtained for the case μvρv/μρ ≪ 1 and similarity is found to exist exactly near the top stagnation point, and approximately for the most part of the tube. Heat-transfer results computed with these similar profiles are presented and discussed. For the multiple-tube case, the analysis includes the effect of condensation between tubes, which is shown to be partly responsible for the high observed heat-transfer rate for vertical tube banks. The inertia effects are neglected due to the insufficiency of boundary-layer theory in this case. Heat-transfer coefficients are presented and compared with experiments. The theoretical results for both cases are also presented in approximate formulas for ease of application.


2021 ◽  
Author(s):  
Vijay K. Dhir

Abstract In this contribution in honor of Late Prof. E. M. Sparrow, we reflect on the pioneering work of Sparrow and Gregg on the development of similarity solutions for laminar film condensation on a vertical plate. Dhir and Lienhard using this work as a basis developed a generalized solution for isothermal curved surfaces on which gravitational acceleration varied along the surface and for variable gravity situations. Subsequently non-isothermal surfaces were also considered. These studies were publisher earlier in the J. Heat Transfer.


Author(s):  
L. K. Liu ◽  
M. C. Wu ◽  
C. J. Fang ◽  
Y. H. Hung

A series of experimental investigations with stringent measurement methods on the studies related to mixed convection from the horizontally confined extended surfaces with a slot jet impingement have been successfully conducted. The relevant parameters influencing mixed convection performance due to jet impingement and buoyancy include the Grashof number, ratio of jet separation distance to nozzle width, ratio of extended surfaces height to nozzle width and jet Reynolds number. The range of these parameters studied are Grs = 3.77 × 105 – 1.84 × 106, H/W = 1–10, Hs/W = 0.74–3.40 and Re = 63–1383. In the study, the heat transfer behavior on the extended surfaces with confined slot jet impingement such as the temperature distribution, local and average Nusselt numbers on the extended surfaces has been systematically explored. The results manifest that the effect of steady-state Grashof number on heat transfer behavior such as stagnation, local and average Nusselt number is not significant; while the heat transfer performance increases with decreasing jet separation distance or with increasing extended surface height and jet Reynolds number. Besides, two new correlations of local and average Nusselt numbers in terms of H/W, Hs/W and Re are proposed for the cases of extended surfaces. A satisfactory agreement is achieved between the results predicted by these correlations and the experimental data. Finally, a complete composite correlation of steady-state average Nusselt number for mixed convection due to jet impingement and buoyancy is proposed. The comparison of the predictions evaluated by this correlation with all the present experimental data is made. The maximum and average deviations of the predictions from the experimental data are 7.46% and 2.87%, respectively.


1989 ◽  
Vol 111 (4) ◽  
pp. 292-297 ◽  
Author(s):  
Karen R. Den Braven

This work analyzes the heat transfer within a tilted thermosyphon and its use in a heat pipe evacuated-tube solar collector. A detailed examination is made of the laminar film condensation process, including the effects of interfacial shear due to the moving vapor. Effects of film surface waves are later included. Including the shear term in the constitutive equations changes the predicted film thickness in the condenser portion of the device by less than one percent, depending on location along the surface. This change causes only a slight increase in the predicted heat transfer. Accounting for surface waves increases the heat transfer rate 10 percent to 50 percent in the Reynolds number range studied. The condenser results are combined with a simple trough model for the evaporator portion of the thermosyphon to give the effective heat-transfer coefficient for the entire tube. Predicted performances of the condenser, the evaporator, and the entire tube compare favorably with available data.


Sign in / Sign up

Export Citation Format

Share Document