Subsurface and Surface Cracking Due to Hertzian Contact

1982 ◽  
Vol 104 (3) ◽  
pp. 347-351 ◽  
Author(s):  
L. M. Keer ◽  
M. D. Bryant ◽  
G. K. Haritos

Numerical results are presented for a cracked elastic half-space surface-loaded by Hertzian contact stresses. A horizontal subsurface crack and a surface breaking vertical crack are contained within the half-space. An attempt to correlate crack geometry to fracture is made and possible mechanisms for crack propagation are introduced.

1992 ◽  
Vol 114 (2) ◽  
pp. 253-261 ◽  
Author(s):  
C. H. Kuo ◽  
L. M. Keer

The three-dimensional problem of contact between a spherical indenter and a multi-layered structure bonded to an elastic half-space is investigated. The layers and half-space are assumed to be composed of transversely isotropic materials. By the use of Hankel transforms, the mixed boundary value problem is reduced to an integral equation, which is solved numerically to determine the contact stresses and contact region. The interior displacement and stress fields in both the layer and half-space can be calculated from the inverse Hankel transform used with the solved contact stresses prescribed over the contact region. The stress components, which may be related to the contact failure of coatings, are discussed for various coating thicknesses.


1972 ◽  
Vol 39 (3) ◽  
pp. 786-790 ◽  
Author(s):  
R. D. Low

The investigation is concerned with some of the effects of embedded flaws in an elastic half space subjected to torsional deformations. Specifically two types of flaws are considered: (a) a penny-shaped rigid inclusion, and (b) a penny-shaped crack. In each case the problem is reduced to a system of Fredholm integral equations. Graphical displays of the numerical results are included.


Author(s):  
X. Jin ◽  
L. M. Keer ◽  
E. L. Chez

Numerical analysis is presented for a fluid filled subsurface crack in an elastic half plane loaded by Hertzian contact stresses. The opening volume of the horizontal Griffith crack is fully occupied by an incompressible fluid. In the presence of friction, a moving Hertzian line contact load is applied at the surface of the half plane. The stress intensity factors at the tips of the fluid filled crack are analyzed on condition that the change of the opening crack volume vanishes due to the fluid incompressibility. The method used is that of replacing the crack by a continuous distribution of edge dislocations. As a cycle of rolling can be viewed as shifting the Hertzian contact stresses across the surface of the half plane, the results of this analysis may prove useful in the prediction of rolling fatigue of an elastic rolling body containing a soft inclusion.


1981 ◽  
Vol 48 (3) ◽  
pp. 539-542 ◽  
Author(s):  
J. D. Achenbach ◽  
R. J. Brind

Elastodynamic Mode I and Mode II stress-intensity factors are presented for a subsurface crack in an elastic half space. The plane of the crack is normal to the surface of the half space. The half space is subjected to normal and tangential time-harmonic surface tractions. Numerical results show the variation of KI and KII at both crack tips, with the dimensionless frequency and the ratio a/b, where a and b are the distances to the surface from the near and the far crack tips, respectively. The results are compared with corresponding results for a crack in an unbounded solid.


2013 ◽  
Vol 80 (6) ◽  
Author(s):  
Fan Jin ◽  
Xu Guo ◽  
Wei Zhang

In the present paper, axisymmetric frictionless adhesive contact between a rigid punch and a power-law graded elastic half-space is analytically investigated with use of Betti's reciprocity theorem and the generalized Abel transformation, a set of general closed-form solutions are derived to the Hertzian contact and Johnson–Kendall–Roberts (JKR)-type adhesive contact problems for an arbitrary punch profile within a circular contact region. These solutions provide analytical expressions of the surface stress, deformation fields, and equilibrium relations among the applied load, indentation depth, and contact radius. Based on these results, we then examine the combined effects of material inhomogeneities and punch surface morphologies on the adhesion behaviors of the considered contact system. The analytical results obtained in this paper include the corresponding solutions for homogeneous isotropic materials and the Gibson soil as special cases and, therefore, can also serve as the benchmarks for checking the validity of the numerical solution methods.


2018 ◽  
Vol 17 (6) ◽  
pp. 458-464
Author(s):  
S. V. Bosakov

The paper presents solutions of two contact problems for the annular plate die on an elastic half-space under the action of axisymmetrically applied force and moment. Such problems usually arise in the calculation of rigid foundations with the sole of the annular shape in chimneys, cooling towers, water towers and other high-rise buildings on the wind load and the load from its own weight. Both problems are formulated in the form of triple integral equations, which are reduced to one integral equation by the method of substitution. In the case of the axisymmetric problem, the kernel of the integral equation depends on the product of three Bessel functions. Using the formula to represent two Bessel functions in the form of a double row on the works of hypergeometric functions Bessel function, the problem reduces to a functional equation that connects the movement of the stamp with the unknown coefficients of the distribution of contact stresses. The resulting functional equation is reduced to an infinite system of linear algebraic equations, which is solved by truncation. Under the action of a moment on the annular plate  die, the distribution of contact stresses is searched as a series by the products of the Legendre attached functions with a weight corresponding to the features in the contact stresses at the die edges. Using the spectral G. Ya. Popov ratio for the ring plate, the problem is again reduced to an infinite system of linear algebraic equations, which is also solved by the truncation method. Two examples of calculations for an annular plate die on an elastic half-space on the action of axisymmetrically applied force and moment are given. A comparison of the results of calculations on the proposed approach with the results for the round stamp and for the annular  stamp with the solutions of other authors is made.


2015 ◽  
Vol 7 (3) ◽  
pp. 295-322 ◽  
Author(s):  
Valeria Boccardo ◽  
Eduardo Godoy ◽  
Mario Durán

AbstractThis paper presents an efficient method to calculate the displacement and stress fields in an isotropic elastic half-space having a hemispherical pit and being subject to gravity. The method is semi-analytical and takes advantage of the axisymmetry of the problem. The Boussinesq potentials are used to obtain an analytical solution in series form, which satisfies the equilibrium equations of elastostatics, traction-free boundary conditions on the infinite plane surface and decaying conditions at infinity. The boundary conditions on the free surface of the pit are then imposed numerically, by minimising a quadratic functional of surface elastic energy. The minimisation yields a symmetric and positive definite linear system of equations for the coefficients of the series, whose particular block structure allows its solution in an efficient and robust way. The convergence of the series is verified and the obtained semi-analytical solution is then evaluated, providing numerical results. The method is validated by comparing the semi-analytical solution with the numerical results obtained using a commercial finite element software.


Author(s):  
Deji Ojetola ◽  
Hamid R. Hamidzadeh

Blasts and explosions occur in many activities that are either man-made or nature induced. The effect of the blasts could have a residual or devastating effect on the buildings at some distance within the vicinity of the explosion. In this investigation, an analytical solution for the time response of a rigid foundation subjected to a distant blast is considered. The medium is considered to be an elastic half space. A formal solution to the wave propagations on the medium is obtained by the integral transform method. To achieve numerical results for this case, an effective numerical technique has been developed for calculation of the integrals represented in the inversion of the transformed relations. Time functions for the vertical and radial displacements of the surface of the elastic half space due to a distant blast load are determined. Mathematical procedures for determination of the dynamic response of the surface of an elastic half-space subjected to the blast along with numerical results for displacements of a rigid foundation are provided.


Sign in / Sign up

Export Citation Format

Share Document