Plunging Wave Forces on Surface-Piercing Structures

1989 ◽  
Vol 111 (2) ◽  
pp. 92-100 ◽  
Author(s):  
E.-S. Chan ◽  
W. K. Melville

An experimental study of deepwater plunging wave loads on vertical walls and cylinders is reported. Simultaneous measurements of the forces and pressures are obtained. The characteristics of the impact loads are presented and the scaling of pressures from model results to prototype scales is discussed. Overall, the characteristics of forces and pressures vary systematically with the structure’s location relative to the wave-breaking location. Impacts on cylinders are similar to those on a flat plate; however, the presence of the wall has a larger influence on the dynamics of impact compared to that of the cylinder.

1995 ◽  
Vol 22 (6) ◽  
pp. 1084-1091
Author(s):  
Michael Isaacson ◽  
Norman Allyn ◽  
Colleen Ackermann

This paper describes the assessment of waves and wave effects with respect to the design of a jetty at Plymouth, Montserrat, in the eastern Caribbean Sea. A previous jetty was destroyed in 1989 by Hurricane Hugo, and a critical part of the new jetty's design relates to the effects of waves. Particular attention is given to the establishment of design wave conditions. This includes both hurricane and non-hurricane conditions and requires a consideration of wave shoaling and refraction, as well as wave breaking in the vicinity of the jetty. The prediction of design wave loads includes the calculation of drag and inertia forces and an assessment of impact loads due to waves on the underside of the jetty and waves breaking onto the deck. Key words: coastal engineering, coastal structures, hydrodynamics, wave forces, wave impact, waves.


2020 ◽  
Author(s):  
V. L. Kocharin ◽  
A. A. Yatskikh ◽  
D. S. Prishchepova ◽  
A. V. Panina ◽  
Yu. G. Yermolaev ◽  
...  

2021 ◽  
Author(s):  
V. L. Kocharin ◽  
A. A. Yatskikh ◽  
D. S. Prishchepova ◽  
A. V. Panina ◽  
Yu. G. Yermolaev ◽  
...  

Author(s):  
Jing Zhang ◽  
Qin Liu ◽  
Xing Hua Shi ◽  
C. Guedes Soares

As the offshore fixed wind turbine developed, more ones will be installed in the sea field with the depth 15–50 meters. Wave force will be one of the main forces that dominate the design of the wind turbine base, which is calculated using the Morison equation traditionally. This method can predict the wave forces for the small cylinders if the drag and inertia coefficients are obtained accurately. This paper will give a series scaled tests of monopile and jacket type base of the offshore wind turbine in tank to study the nonlinear wave loads.


2020 ◽  
Vol 61 (9) ◽  
Author(s):  
T. Mai ◽  
C. Mai ◽  
A. Raby ◽  
D. M. Greaves

Abstract Local and global loadings, which may cause the local damage and/or global failure and collapse of offshore structures and ships, are experimentally investigated in this study. The research question is how the elasticity of the structural section affects loading during severe environmental conditions. Two different experiments were undertaken in this study to try to answer this question: (i) vertical slamming impacts of a square flat plate, which represents a plate section of the bottom or bow of a ship structure, onto water surface with zero degree deadrise angle; (ii) wave impacts on a truncated vertical wall in water, where the wall represents a plate section of a hull. The plate and wall are constructed such that they can be either rigid or elastic by virtue of a specially designed spring system. The experiments were carried out in the University of Plymouth’s COAST Laboratory. For the cases considered here, elasticity of the impact plate and/or wall has an effect on the slamming and wave impact loads. Here the slamming impact loads (both pressure and force) were considerably reduced for the elastic plate compared to the rigid one, though only at high impact velocities. The total impact force on the elastic wall was found to reduce for the high aeration, flip-through and slightly breaking wave impacts. However, the impact pressure decreased on the elastic wall only under flip-through wave impact. Due to the elasticity of the plates, the impulse of the first positive phase of pressure and force decreases significantly for the vertical slamming impact tests. This significant effect of hydroelasticity is also found for the total force impulse on the vertical wall under wave impacts. Graphic abstract Hydroelasticity effects on water-structure impacts: a impact pressures on dropped plates; b impact forces on dropped plates; c, d, e, f wave impact pressures on the vertical walls; g wave impact forces on the vertical walls; h wave force impulses on the vertical walls: elastic wall 1 vs. rigid wall (filled markers); elastic wall 2 vs. rigid wall (empty markers)


2012 ◽  
Vol 1 (33) ◽  
pp. 71 ◽  
Author(s):  
Arndt Hildebrandt ◽  
Torsten Schlurmann

This paper presents breaking wave loads on a tripod structure from physical model tests and numerical simulations. The large scale model tests (1:12) are described as well as the validation of the three dimensional numerical model by comparison of CFD wave gauge data and pressures with measurements in the large wave flume inside and outside the impact area. Subsequently, the impact areas due to a broken wave, a curled wave front as well as for wave breaking directly at the structure with a partly vertical wave front are compared to each other. Line forces in terms of slamming coefficients with variation in time and space are derived from CFD results and the velocity distribution is presented at the onset of wave breaking. Finally, the results are briefly discussed in comparison to other slamming studies.


2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


Sign in / Sign up

Export Citation Format

Share Document