Fatigue Fracture Mechanics Modeling and Structural Integrity Assessment of Offshore Welded Tubular Joints

1989 ◽  
Vol 111 (3) ◽  
pp. 170-176 ◽  
Author(s):  
J. C. P. Kam ◽  
D. A. Topp ◽  
W. D. Dover

Evaluation of the structural integrity of offshore structures requires information on the reliability of nondestructive testing, the accuracy of fatigue crack growth modeling and other data. The University College London Underwater NDE Centre has been set up to provide information on the effectiveness and reliability of different nondestructive testing methods. To achieve this aim, a large library of cracked specimens will be assembled. In the preliminary phase of producing this library, a series of large-scale welded tubular joints were fatigue tested and the crack growth was fully monitored with the ACPD technique. This paper will describe briefly the background to the crack library and present the data obtained from fatigue tests. It will also describe a new model for fatigue crack growth prediction in tubular joints using fracture mechanics. This model allows the prediction of the size effect noted previously in the stress/life curves for tubular joints.

1985 ◽  
Vol 107 (2) ◽  
pp. 212-219 ◽  
Author(s):  
S. J. Hudak ◽  
O. H. Burnside ◽  
K. S. Chan

An improved fracture mechanics model for fatigue crack growth in welded tubular joints is developed. Primary improvements include the use of a wide-ranged equation for the fatigue crack growth rate properties and the incorporation of the influence of local weld-toe geometry into the stress intensity factor equations. The latter is shown to explain the dependence of the fatigue life on the size of tubular joints. Good agreement between predicted and measure fatigue lives of full-scale joints tested in air further supports the applicability of the fracture mechanics approach to offshore structures. Although the model should also be applicable to corrosion fatigue, additional imput data and verification testing are needed under these conditions. Factors which could improve the model are discussed.


Author(s):  
Ole Tom Vårdal

In structural integrity management, it is essential to know the fatigue crack growth potential. The lessons learned from use of refined fatigue analyses, fracture mechanics and probabilistic methods for platforms in-service are presented. For ageing offshore units of semi-submersible design, the inspection history of more than 20 000 NDT inspections and detection of close to 1000 fatigue cracks, are used in this study. These experience data are used to assess the potential for Non-conservative estimate for the fatigue crack growth potential.


Author(s):  
Takuya Ogawa ◽  
Chihiro Narazaki ◽  
Masao Itatani ◽  
Akihiko Hirano ◽  
Hiroshi Nagase ◽  
...  

Recently, incidents of SCC in Ni-base alloy weld metal of BWR components have been reported. When the defects are detected by inspection, structural integrity assessment should be performed for the technical judgment on continuous service based on the Rules on Fitness-for-Service for Nuclear Power Plants of the Japan Society of Mechanical Engineers Code (JSME FFS Code). The structural integrity assessment includes fatigue crack growth analysis. However, fatigue crack growth analysis for Ni-base alloy is impossible since the fatigue crack growth rate curves in air and the BWR environment are not prescribed yet in the JSME FFS Code. The curve in air environment is needed for the structural integrity assessment of the flaw when the embedded flaw repair which is one of the repair techniques to isolate the defect from water environment by seal welding is applied. In this study, fatigue crack growth tests in air environment were performed for Ni-base alloy weld metal. Based on the test data, fatigue crack growth rate curves with ΔKth of Ni-base alloy weld metal were investigated. It is found that fatigue crack growth data in the Paris region hardly depend on the test temperature and the stress ratio, whereas data around ΔKth are dependent on them. Hence, the curve in the Paris region was regarded as the same curve despite the difference of the test temperature and the stress ratio. The minimum ΔK of final crack growth data in the ΔK decreasing test was adopted as ΔKth of the curve.


Author(s):  
J. Efrai´n Rodri´guez-Sa´nchez ◽  
William D. Dover ◽  
Feargal P. Brennan ◽  
Alejandro Rodri´guez-Castellanos

Fatigue life predictions based on fracture mechanics calculations are required to satisfy an increasing level of safety demanded by industry. These predictions are mainly used to schedule NDT inspections and with inspection data make structural integrity assessments. The periodic inspection-assessment process can lead to the implementation of a fatigue crack repair by crack removal. Fracture mechanics analysis is used again to determine whether or not a repair will be effective. For the case of tubular joints, in offshore structures, once repairs have been shown to be ineffective it is usually required to install a clamp to maintain the continuity of joint members if the structure is still required for production. In this paper a fracture mechanics analysis of crack repaired joints based on Y factors is presented. The analysis is used to predict fatigue life after crack removal and is validated against T-butts experimental data. The analysis is also extrapolated for the prediction of fatigue life of crack repaired tubular joints.


Author(s):  
Valéry Lacroix ◽  
Pierre Dulieu

During the 2012 outages at Doel 3 and Tihange 2 Nuclear Power Plants, a large number of quasi-laminar indications were detected, mainly in the lower and upper core shells of the Reactor Pressure Vessels (RPVs). The observed indications could subsequently be attributed to hydrogen flaking induced during the component manufacturing process. As a consequence, both units remained core unloaded pending the elaboration of an extensive Safety Case demonstrating that they can be safely operated. The Structural Integrity Assessment of the RPVs, through the Flaw Acceptability Assessment, aimed at demonstrating that the identified indications do not jeopardize the integrity of the reactor vessel in all operating modes, transients and accident conditions. This demonstration has been done on the basis of a specific methodology inspired by the ASME B&PV Code Section XI procedure but adapted to the nature and the number of indications found in the Doel 3 and Tihange 2 RPVs. As requested by Article IWB-3610(a) of ASME B&PV Code Section XI, one of the parts that have to be addressed through the Flaw Acceptability Assessment is the Fatigue Crack Growth (FCG) Analysis of the flaws in the core shells until the end-of-service lifetime of the RPVs. Due to the large number of flaws in the core shells, a specific methodology has been developed in order not to perform the FCG Analysis of each flaw separately. The paper describes this simplified approach aiming at distributing the flaws according to their inclination and at defining envelope flaws covering the actual flaws to carry out FCG Analysis. Furthermore, the paper highlights and quantifies the conservatisms of this analysis leading finally to demonstrate that the FCG of hydrogen flakes is not a concern in Doel 3 and Tihange 2 RPVs.


2004 ◽  
Vol 127 (2) ◽  
pp. 182-189 ◽  
Author(s):  
J. Efraín Rodríguez-Sánchez ◽  
William D. Dover ◽  
Feargal P. Brennan ◽  
Alejandro Rodríguez Castellanos

Fatigue life predictions based on fracture mechanics calculations are required to satisfy an increasing level of safety demanded by industry. These predictions are mainly used to schedule NDT inspections and with inspection data make structural integrity assessments. The periodic inspection-assessment process can lead to the implementation of a fatigue crack repair by crack removal. Fracture mechanics analysis is used again to determine whether or not a repair will be effective. For the case of tubular joints, in offshore structures, once repairs have been shown to be ineffective it is usually required to install a clamp to maintain the continuity of joint members if the structure is still required for production. In this paper a fracture mechanics analysis of crack repaired joints based on Y factors is presented. The analysis is used to predict fatigue life after crack removal and is validated against T-butts experimental data. The analysis is also extrapolated for the prediction of fatigue life of crack repaired tubular joints.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 475
Author(s):  
Lukáš Trávníček ◽  
Ivo Kuběna ◽  
Veronika Mazánová ◽  
Tomáš Vojtek ◽  
Jaroslav Polák ◽  
...  

In this work two approaches to the description of short fatigue crack growth rate under large-scale yielding condition were comprehensively tested: (i) plastic component of the J-integral and (ii) Polák model of crack propagation. The ability to predict residual fatigue life of bodies with short initial cracks was studied for stainless steels Sanicro 25 and 304L. Despite their coarse microstructure and very different cyclic stress–strain response, the employed continuum mechanics models were found to give satisfactory results. Finite element modeling was used to determine the J-integrals and to simulate the evolution of crack front shapes, which corresponded to the real cracks observed on the fracture surfaces of the specimens. Residual fatigue lives estimated by these models were in good agreement with the number of cycles to failure of individual test specimens strained at various total strain amplitudes. Moreover, the crack growth rates of both investigated materials fell onto the same curve that was previously obtained for other steels with different properties. Such a “master curve” was achieved using the plastic part of J-integral and it has the potential of being an advantageous tool to model the fatigue crack propagation under large-scale yielding regime without a need of any additional experimental data.


Sign in / Sign up

Export Citation Format

Share Document