A Survey of One Class of 7-Jointed Serially Connected Robots: Type-Synthesis to Obtain Controllably Dexterous Workspace

1989 ◽  
Vol 111 (2) ◽  
pp. 163-175 ◽  
Author(s):  
J. K. Davidson

A type-synthesis process, which is based on screw theory and geometry, is developed to identify certain robots, each of which can provide controllably dexterous workspace of a tool-point. The identification process is confined to only those robots which control the motion of the end-effector with seven series-connected joints, the axes for the outermost three of which are concurrent. Forty six types of robots are so identified, and, for each, the results are (i) a suitable kinematic chain for the arm and (ii) suitable angle-dimensions for the links of the arm, where the angle-choices are limited to the values 0, ± π/2, and π. A geometric description of the dominant function for control is included. The same kinematic chains are surveyed for all possible parallel and right-angle arrangements of adjacent axes in the four links of the arm. Again utilizing screw theory, 160 robots are identified which do not posses full-cycle axis-dependence among some or all of the first five axes.

2004 ◽  
Vol 126 (1) ◽  
pp. 83-92 ◽  
Author(s):  
Xianwen Kong ◽  
Cle´ment M. Gosselin

A method is proposed for the type synthesis of 3-DOF (degree-of-freedom) translational parallel manipulators (TPMs) based on screw theory. The wrench systems of a translational parallel kinematic chain (TPKC) and its legs are first analyzed. A general procedure is then proposed for the type synthesis of TPMs. The type synthesis of legs for TPKCs, the type synthesis of TPKCs as well as the selection of actuated joints of TPMs are dealt with in sequence. An approach to derive the full-cycle mobility conditions for legs for TPKCs is proposed based on screw theory and the displacement analysis of serial kinematic chains undergoing small joint motions. In addition to the TPKCs proposed in the literature, TPKCs with inactive joints are synthesized. The phenomenon of dependent joint groups in a TPKC is revealed systematically. The validity condition of actuated joints of TPMs is also proposed. Finally, linear TPMs, which are TPMs whose forward displacement analysis can be performed by solving a set of linear equations, are also revealed.


1985 ◽  
Vol 107 (1) ◽  
pp. 106-111 ◽  
Author(s):  
D. G. Olson ◽  
T. R. Thompson ◽  
D. R. Riley ◽  
A. G. Erdman

One of the problems encountered in attempting to computerize type synthesis of mechanisms is that of automatically generating a computer graphics display of candidate kinematic chains or mechanisms. This paper presents the development of a computer algorithm for automatic sketching of kinematic chains as part of the computer-aided type synthesis process. Utilizing concepts from graph theory, it can be shown that a sketch of a kinematic chain can be obtained from its graph representation by simply transforming the graph into its line graph, and then sketching the line graph. The fundamentals of graph theory as they relate to the study of mechanisms are reviewed. Some new observations are made relating to graphs and their corresponding line graphs, and a novel procedure for transforming the graph into its line graph is presented. This is the basis of a sketching algorithm which is illustrated by computer-generated examples.


Author(s):  
Yufeng Luo ◽  
Tingli Yang ◽  
Ali Seireg

Abstract A systematic procedure is presented for the structure type synthesis of multiloop spatial kinematic chains with general variable constraints in this paper. The parameters and the structure types of the contracted graphs and the branch chains used to synthesize such kinematic chains are given for kinematic chains with up to four independent loops. The assignments for the constraints values of all the loops in a kinematic chain are discussed. Using these as the basis, the structure types of the multiloop spatial kinematic chains with hybrid constraints could be synthesized.


2004 ◽  
Vol 126 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Xianwen Kong ◽  
Cle´ment M. Gosselin

A spherical parallel manipulator (SPM) refers to a 3-DOF (degree-of-freedom) parallel manipulator generating 3-DOF spherical motion. A method is proposed for the type synthesis of SPMs based on screw theory. The wrench systems of a spherical parallel kinematic chain (SPKC) and its legs are first analyzed. A general procedure is then proposed for the type synthesis of SPMs. The type synthesis of legs for SPKCs, the type synthesis of SPKCs, as well as the selection of inputs of SPMs are dealt with in sequence. An input validity condition of SPMs is proposed. SPKCs with and without inactive joints are synthesized. The number of overconstraints of each SPKC is also given. The phenomenon of dependent joint groups in an SPKC is revealed for the first time.


Author(s):  
Songhui Nie ◽  
Hongzhao Liu ◽  
Aihong Qiu

Sketching of mechanisms identified during the type synthesis process constitutes an important link with the subsequent dimensional synthesis process in the systematic design of mechanisms. Based on the independent loops, a simple and comprehensive method for automatically sketching every type of kinematic chain regardless of the number of links and degrees of freedom is proposed. In the method, a maximal feasible outer-loop is derived by the independent loops addition or subtraction such that all the independent loops become its non-crossing inner loops. During automatic sketching of mechanisms process, the joints of kinematic chain are located on vertices of concentric inscribed regular polygon by outer lane to inner lane in terms of the outer loop and the inner loops. The development and application of this algorithm based on the outer loop and the inner loops relationships are demonstrated with the aid of several mechanism examples.


2011 ◽  
Vol 308-310 ◽  
pp. 2025-2030 ◽  
Author(s):  
Wen Juan Lu ◽  
Li Jie Zhang ◽  
Da Xing Zeng ◽  
Ruo Song Wang

For the general parallel mechanisms(PMS), since the coupling between kinematic chains, the nonlinear relation between the input and output is presented, which have led to difficulty in the trajectory planning and precision control. Design of motion decoupled parallel mechanisms(DPMS) has become a good new topic in this area and has captured researcher's attention. In this work, the approach to a synthesis of three degree-of-freedom(3-DOF) DPMS is considered based on screw theory and motion synthesis ideas. Criterions for type synthesis of the branches for DPMS is established according to the twist screw system of the limbs, which assures the decoupling in each limb. Then a six-step procedure is presented for the type synthesis of 2T1R decoupled mechanisms.


Author(s):  
David R. Nielsen ◽  
Kazem Kazerounian

Abstract A procedure is developed to optimize planar mechanism type. A Genetic Algorithm is used to cycle populations of kinematic chain link adjacency matrices, through selection, crossover, and mutation. During this optimization, fit kinematic chains survive while unfit kinematic chains do not. Upon convergence, synthesized kinematic chains of high fitness remain. This technique was lead to be called the Genetic Algorithm for Type Synthesis (GATS). GATS introduces four new ideas for the type synthesis of mechanisms. First, it does not permute all possible kinematic chains. It searches for the best kinematic chains depending on a designer’s specifications. Second, larger size mechanisms can be generated because of the genetic algorithm’s evolutionary naturalness. Third, a novel approach was applied to genetic algorithms to allow the encodings to mutate in size. This allowed for addition or elimination of links in kinematic chains during evolution. Forth, a new property was deduced from mechanism topography that describes the mechanism design flexibility.


Author(s):  
J. J. Yu ◽  
X. Pei ◽  
S. Z. Li ◽  
Hai-jun Su ◽  
J. B. Hopkins ◽  
...  

In recent years, the increasing of application requirements call for development of a variety of high-performance (e.g. large-displacement, high-precision) flexible joints. In this paper we demonstrate how to use the proposed methodology for the type synthesis of flexure systems given in the companion paper to synthesize concepts for complex flexible joints. According to the joint characteristics other than other flexure systems, a basic design philosophy and a general type synthesis process for flexible joints are presented firstly. The numerations and type synthesis for four commonly used flexible joint types, i.e. flexible revolute joints (FRJs), flexible translational joints (FTJs), flexible universal joints (FUJs), and flexible spherical joints (FSJs) are investigated in detail. As a result, not only a variety of known flexible joints are systematically surveyed and classified, but also are some new flexible joints developed. The output of this process is the derivation of a multiple of flexible joint concepts that would then be modeled and optimized by existing modeling and analysis methods.


2012 ◽  
Vol 4 (3) ◽  
Author(s):  
André Gallant ◽  
Roger Boudreau ◽  
Marise Gallant

In this work, a method is presented to geometrically determine the dexterous workspace boundary of kinematically redundant n-PRRR (n-PRRR indicates that the manipulator consists of n serial kinematic chains that connect the base to the end-effector. Each chain is composed of two actuated (therefore underlined) joints and two passive revolute joints. P indicates a prismatic joint while R indicates a revolute joint.) planar parallel manipulators. The dexterous workspace of each nonredundant RRR kinematic chain is first determined using a four-bar mechanism analogy. The effect of the prismatic actuator is then considered to yield the workspace of each PRRR kinematic chain. The intersection of the dexterous workspaces of all the kinematic chains is then obtained to determine the dexterous workspace of the planar n-PRRR manipulator. The Gauss divergence theorem applied to planar surfaces is implemented to compute the total dexterous workspace area. Finally, two examples are shown to demonstrate applications of the method.


2009 ◽  
Vol 131 (10) ◽  
Author(s):  
Jing-Shan Zhao ◽  
Fulei Chu ◽  
Zhi-Jing Feng ◽  
Sheng Zhao

This paper focuses on the synthesis of an independent suspension that can guide the wheel to track a straight line when moving up (jounce) and down (rebound). With displacement subgroups, it first synthesizes a rigid body guidance mechanism and verifies the result through screw theory. To simplify and optimize the loads of each kinematic chain of the knuckle, it investigates the static equations and ultimately synthesizes a symmetric redundant-constraint suspension structure, which could not only eliminate the shambling shocks induced by the jumping of wheels but also decrease the abrasion of tires. Theoretically, only one pair of noncoplanar kinematic chains is necessary to realize straight line guidance. However, a second pair of noncoplanar kinematic chains is particularly utilized to improve the load status of the links. Because of the redundant constraints induced by the suspension structures, the whole weight can be significantly reduced compared with the initial one. ADAMS simulations with a set of real parameters indicate that the rear suspension mechanism proposed in this paper can guide the wheel to follow a rectilinear locus during jounce and rebound. Therefore, this kind of independent suspension can improve the ride and handling properties of advanced vehicles.


Sign in / Sign up

Export Citation Format

Share Document