scholarly journals Annular Honeycomb Seals: Test Results for Leakage and Rotordynamic Coefficients; Comparisons to Labyrinth and Smooth Configurations

1989 ◽  
Vol 111 (2) ◽  
pp. 293-300 ◽  
Author(s):  
D. Childs ◽  
D. Elrod ◽  
K. Hale

Test results are presented for leakage and rotordynamic coefficients for seven honeycomb seals. All seals have the same radius, length, and clearance; however, the cell depths and diameters are varied. Rotordynamic data, which are presented, consist of the direct and cross-coupled stiffness coefficients and the direct damping coefficients. The rotordynamic-coefficient data show a considerable sensitivity to changes in cell dimensions; however, no clear trends are identifiable. Comparisons of test data for the honeycomb seals with labyrinth and smooth annular seals shows the honeycomb seal had the best sealing (minimum leakage) performance, followed in order by the labyrinth and smooth seals. For prerotated fluids entering the seal, in the direction of shaft rotation, the honeycomb seal has the best rotordynamic stability followed in order by the labyrinth and smooth. For no prerotation, or fluid prerotation against shaft rotation, the labyrinth seal has the best rotordynamic stability followed in order by the smooth and honeycomb seals.

Author(s):  
Dara W. Childs ◽  
David A. Elrod ◽  
Keith Hale

Test results (leakage and rotordynamic coefficients) are presented for an interlock and tooth-on-stator labyrinth seals. Tests were carried out with air at speeds out to 16,000 cpm and supply pressures up to 7.5 bars. The rotordynamic coefficients consist of direct and cross-coupled stiffness and damping coefficients. Damping-coefficient data have not previously been presented for interlock seals. The test results support the following conclusions: (a) The interlock seal leaks substantially less than labyrinth seals. (b) Destabilizing forces are lower for the interlock seal. (c) The labyrinth seal has substantially greater direct damping values than the interlock seal. A complete rotordynamics analysis is needed to determine which type of seal would yield the best stability predictions for a given turbomachinery unit.


Author(s):  
Jeff Agnew ◽  
Dara Childs

Measured rotordynamic coefficients are presented for a flexure-pivot-pad journal bearing (FPJB) in a load-between-pad configuration with: (1) an active, and (2) locked integral squeeze film damper (ISFD). Prior rotordynamic-coefficient test results have been presented for FPJBs (alone), and rotor-response results have been presented for rotors supported by FPJBS with ISFDs; however, these are the first rotordynamic-coefficient test results for FPJBs with ISFDs. A multi-frequency dynamic testing regime is employed. For both bearing configurations, quadratic curve fits provide good representation of the real portions of the dynamic-stiffness coefficients yielding a direct stiffness and a direct added-mass coefficient. The imaginary portions are well represented by linear curve fits, implying constant, frequency-independent direct-damping coefficients. Direct stiffness coefficients are ∼50% lower for the active-damper configuration, and direct damping coefficients are only modestly lower. The combination of ∼50% reduction in direct stiffness with a modest drop in direct damping indicates a very effective squeeze-film damper application. Added-mass coefficients are normally lower for the active-damper configuration, and all coefficient trends (for changes in loading and shaft speed) are “flatter” for the active flexure pivot-pad damper bearing. The measured rotordynamic coefficients are used to calculate the whirl frequency ratio and indicate high stability for both bearing configurations.


Author(s):  
Dara W. Childs ◽  
James E. Mclean ◽  
Min Zhang ◽  
Stephen P. Arthur

In the late 1970s, Benckert and Wachter (Technical University Stuttgart) tested labyrinth seals using air as the test media and measured direct and cross-coupled stiffness coefficients. They reported the following results: (1) fluid preswirl in the direction of shaft rotation creates destabilizing cross-coupled stiffness coefficients and (2) effective swirl brakes at the inlet to the seal can markedly reduce the cross-coupled stiffness coefficients, in many cases reducing them to zero. In recent years, “negative-swirl” swirl brakes have been employed, which attempt to reverse the circumferential direction of inlet flow, changing the sign of the cross-coupled stiffness coefficients and creating stabilizing stiffness forces. This study presents test results for a 16-tooth labyrinth seal with positive inlet preswirl (in the direction of shaft rotation) for the following inlet conditions: (1) no swirl brakes, (2) straight, conventional swirl brakes, and (3) negative-swirl swirl brakes. The negative-swirl swirl-brake designs were developed based on computational fluid dynamics (CFD) predictions. Tests were conducted at 10.2, 15.35, and 20.2 krpm with 70 bar of inlet pressure for pressure ratios of 0.3, 0.4, and 0.5. Test results include leakage and rotordynamic coefficients. In terms of leakage, the negative-swirl brake configuration leaked the least, followed by the conventional brake, followed by the no-brake design. Normalized to the negative-swirl brake configuration, the conventional-brake and no-brake configurations mass flow rate was greater, respectively, by factors of 1.04 and 1.09. The direct-stiffness coefficients are negative but small, consistent with past experience. The conventional swirl brake drops the destabilizing cross-coupled stiffness coefficients k by a factor of about 0.8 as compared to the no-brake results. The negative-swirl brake produces a change in sign of k with an appreciable magnitude; hence, the stability of forward precessing modes would be enhanced. In descending order, the direct-damping coefficients C are: no-swirl, negative-swirl, and conventional-swirl. Normalized in terms of the no-swirl case, C for the negative and conventional brake designs is, respectively, 0.7 and 0.6 smaller. The effective damping Ceff combines the effect of k and C. Ceff is large and positive for the negative-swirl configuration and near zero for the no-brake and conventional-brake designs. The present results for a negative-brake design are very encouraging for both eye-packing seals (where conventional swirl brakes have been previously employed) and division-wall and balance-piston seals, where negative shunt injection has been employed.


Author(s):  
Dara W. Childs ◽  
James E. Mclean ◽  
Min Zhang ◽  
Stephen P. Arthur

In the late 1970’s, Benckert and Wachter (Technical University Stuttgart) tested labyrinth seals using air as the test media and measured direct and cross-coupled stiffness coefficients. They reported the following results: (1) Fluid pre-swirl in the direction of shaft rotation creates destabilizing cross-coupled stiffness coefficients, and (2) Effective swirl brakes at the inlet to the seal can markedly reduce the cross-coupled stiffness coefficients, in many cases reducing them to zero. In recent years, “negative-swirl” swirl brakes have been employed that attempt to reverse the circumferential direction of inlet flow, changing the sign of the cross-coupled stiffness coefficients and creating stabilizing stiffness forces. This study presents test results for a 16-tooth labyrinth seal with positive inlet preswirl (in the direction of shaft rotation) for the following inlet conditions: (1) No swirl brakes, (2) Straight, conventional swirl brakes, and (3) Negative-swirl swirl brakes. The negative-swirl swirl-brake designs were developed based on CFD predictions. Tests were conducted at 10.2, 15.35, and 20.2 krpm with 70 bars of inlet pressure for pressure ratios of 0.3, 0.4, 0.5. Test results include leakage and rotordynamic coefficients. In terms of leakage, the negative-swirl brake configuration leaked the least, followed by the conventional brake, followed by the no-brake design. Normalized to the negative-swirl brake configuration, the conventional-brake and no-brake configurations mass flow rate were greater, respectively, by factors of 1.04 and 1.09. The direct stiffness coefficients are negative but small, consistent with past experience. The conventional swirl brake drops the destabilizing cross-coupled stiffness coefficients k by a factor of about 0.8 as compared to the no-brake results. The negative-swirl brake produces a change in sign of k with an appreciable magnitude; hence, the stability of forwardly-precessing modes would be enhanced. In descending order, the direct damping coefficients C are: no-swirl, negative-swirl, conventional-swirl. Normalized in terms of the no-swirl case, C for the negative and conventional brake designs are, respectively, 0.7 and 0.6 smaller. The effective damping Ceff combines the effect of k and C. Ceff is large and positive for the negative-swirl configuration and near zero for the no-brake and conventional-brake designs. The present results for a negative-brake design are very encouraging for both eye-packing seals (where conventional swirl brakes have been previously employed) and division-wall and balance-piston seals where negative shunt injection has been employed.


Author(s):  
Alexander O. Pugachev ◽  
Manuel Gaszner ◽  
Christos Georgakis ◽  
Paul Cooper

This paper studies the effect of brush seal segmentation on the seal performance characteristics. A brush-labyrinth sealing configuration arranged of one brush seal downstream and two labyrinth fins upstream is studied experimentally and theoretically. The studied brush seal is of welded design installed with zero cold radial clearance. The brush seal front and back rings as well as the bristle pack are segmented radially in a single plane using the electrical discharge machining technique. The segmentation procedure results in loss of bristles at the site of the cuts altering the leakage flow structure in the seal and its performance characteristics. Two test rigs are used to obtain leakage, as well as rotordynamic stiffness and damping coefficients of the seal at different pressure ratios. The CFD-based model is used to predict the seal performance and to study in detail local changes in the flow field due to the segmentation. A back-to-back comparison of the performance of non-segmented and segmented brush seals, as well as baseline labyrinth seal is provided. The obtained results demonstrate that the segmentation in general negatively affects the performance of the studied brush-labyrinth sealing configuration. However, the segmented brush seal shows increased direct damping coefficients.


Author(s):  
Manuel Gaszner ◽  
Alexander O. Pugachev ◽  
Christos Georgakis ◽  
Paul Cooper

A brush-labyrinth sealing configuration consisting of two labyrinth fins upstream and one brush seal downstream is studied experimentally and theoretically. Two slightly different brush seal designs with zero cold radial clearance are considered. The sealing configurations are tested on the no-whirl and dynamic test rigs to obtain leakage performance and rotordynamic stiffness and damping coefficients. The no-whirl tests allow identification of the local rotordynamic direct and cross-coupled stiffness coefficients for a wide range of operating conditions, while the dynamic test rig is used to obtain both global stiffness and damping coefficients but for a narrower operating range limited by the capabilities of a magnetic actuator. Modeling of the brush-labyrinth seals is performed using computational fluid dynamics. The experimental global rotordynamic coefficients consist of an aerodynamic component due to the gas flow and a mechanical component due to the contact between the bristle tips and rotor surface. The computational fluid dynamics (CFD)–based calculations of rotordynamic coefficients provide, however, only the aerodynamic component. A simple mechanical model is used to estimate the theoretical value of the mechanical stiffness of the bristle pack during the contact. The results obtained for the sealing configurations with zero cold radial clearance brush seals are compared with available data on three-tooth-on-stator labyrinth seals and a brush seal with positive cold radial clearance. Results show that the sealing arrangement with a line-on-line welded brush seal has the best performance overall with the lowest leakage and cross-coupled stiffness. The predictions are generally in agreement with the measurements for leakage and stiffness coefficients. The seal-damping capability is noticeably underpredicted.


Author(s):  
Elias A. Soto A. ◽  
Dara W. Childs

Centrifugal compressors are increasingly required to operate at higher pressures, speeds, and fluid density. In these conditions, compressors are susceptible to rotordynamic instabilities. To remedy this situation, labyrinth seals have sometimes been modified by using shunt injection. In shunt injection, the gas is taken from the diffuser or discharge volute and injected into an upstream chamber of the balance-piston labyrinth seal. The injection direction can be radial or against rotation. This study contains the first measured rotordynamic data for labyrinth seals with shunt injection. A comparison has been made between conventional labyrinth seals, labyrinth seal with shunt injection (radial and against rotation), and a honeycomb seal. Labyrinth seals with injection against rotation are better able to control rotordynamic instabilities than labyrinth seals with radial injection; however, the leakage is slightly higher. The leakage comparison for all seals demonstrates that the honeycomb seal has the best flow control. Test data are presented for a top rotor surface velocity of 110 m/sec, a supply pressure of 13.7 bars, and IPr = 0.95 (injection pressure is 1.05 = 1/0.95 times the seal inlet pressure). For these conditions, and considering effective damping, the labyrinth seal with injection against rotation is better than the honeycomb seal when the pressure ratio across the seal PR<0.45. On the other hand, the honeycomb seal is better when PR>0.45. The effectiveness of the shunt-injection against rotation in developing effective damping is reduced with increasing rotor surface velocity.


2004 ◽  
Vol 126 (2) ◽  
pp. 326-333 ◽  
Author(s):  
Dara W. Childs ◽  
Jonathan Wade

Selected test results are presented for an annular gas seal using a smooth rotor and a hole-pattern-roughness stator for a supply pressure of 70 bar, three pressure ratios, three speeds up to 20,000 rpm, two clearances, and three preswirl ratios. Dynamic data include frequency-dependent direct and cross-coupled stiffness and damping coefficients. Static data include leakage and upstream and downstream pressures and temperatures. Very good agreements are found between measurements and predictions from a two-control-volume bulk-flow model.


Sign in / Sign up

Export Citation Format

Share Document