Computational analysis of turbulent flow through an eccentric annulus under different temperature conditions

2018 ◽  
Vol 28 (9) ◽  
pp. 2189-2207 ◽  
Author(s):  
Erman Ulker ◽  
Sıla Ovgu Korkut ◽  
Mehmet Sorgun

Purpose The purpose of this paper is to solve Navier–Stokes equations including the effects of temperature and inner pipe rotation for fully developed turbulent flow in eccentric annuli by using finite difference scheme with fixing non-linear terms. Design/methodology/approach A mathematical model is proposed for fully developed turbulent flow including the effects of temperature and inner pipe rotation in eccentric annuli. Obtained equation is solved numerically via central difference approximation. In this process, the non-linear term is frozen. In so doing, the non-linear equation can be considered as a linear one. Findings The convergence analysis is studied before using the method to the proposed momentum equation. It reflects that the method approaches to the exact solution of the equation. The numerical solution of the mathematical model shows that pressure gradient can be predicted with a good accuracy when it is compared with experimental data collected from experiments conducted at Izmir Katip Celebi University Flow Loop. Originality/value The originality of this work is that Navier–Stokes equations including temperature and inner pipe rotation effects for fully developed turbulent flow in eccentric annuli are solved numerically by a finite difference method with frozen non-linear terms.

2016 ◽  
Vol 26 (3/4) ◽  
pp. 1240-1271 ◽  
Author(s):  
Camilo Andrés Bayona Roa ◽  
Joan Baiges ◽  
R Codina

Purpose – The purpose of this paper is to apply the variational multi-scale framework to the finite element approximation of the compressible Navier-Stokes equations written in conservation form. Even though this formulation is relatively well known, some particular features that have been applied with great success in other flow problems are incorporated. Design/methodology/approach – The orthogonal subgrid scales, the non-linear tracking of these subscales, and their time evolution are applied. Moreover, a systematic way to design the matrix of algorithmic parameters from the perspective of a Fourier analysis is given, and the adjoint of the non-linear operator including the volumetric part of the convective term is defined. Because the subgrid stabilization method works in the streamline direction, an anisotropic shock capturing method that keeps the diffusion unaltered in the direction of the streamlines, but modifies the crosswind diffusion is implemented. The artificial shock capturing diffusivity is calculated by using the orthogonal projection onto the finite element space of the gradient of the solution, instead of the common residual definition. Temporal derivatives are integrated in an explicit fashion. Findings – Subsonic and supersonic numerical experiments show that including the orthogonal, dynamic, and the non-linear subscales improve the accuracy of the compressible formulation. The non-linearity introduced by the anisotropic shock capturing method has less effect in the convergence behavior to the steady state. Originality/value – A complete investigation of the stabilized formulation of the compressible problem is addressed.


2019 ◽  
Vol 91 (2) ◽  
pp. 309-316 ◽  
Author(s):  
Jernej Drofelnik ◽  
Andrea Da Ronch ◽  
Matteo Franciolini ◽  
Andrea Crivellini

Purpose This paper aims to present a numerical method based on computational fluid dynamics that allows investigating the buffet envelope of reference equivalent wings at the equivalent cost of several two-dimensional, unsteady, turbulent flow analyses. The method bridges the gap between semi-empirical relations, generally dominant in the early phases of aircraft design, and three-dimensional turbulent flow analyses, characterised by high costs in analysis setups and prohibitive computing times. Design/methodology/approach Accuracy in the predictions and efficiency in the solution are two key aspects. Accuracy is maintained by solving a specialised form of the Reynolds-averaged Navier–Stokes equations valid for infinite-swept wing flows. Efficiency of the solution is reached by a novel implementation of the flow solver, as well as by combining solutions of different fidelity spatially. Findings Discovering the buffet envelope of a set of reference equivalent wings is accompanied with an estimate of the uncertainties in the numerical predictions. Just over 2,000 processor hours are needed if it is admissible to deal with an uncertainty of ±1.0° in the angle of attack at which buffet onset/offset occurs. Halving the uncertainty requires significantly more computing resources, close to a factor 200 compared with the larger uncertainty case. Practical implications To permit the use of the proposed method as a practical design tool in the conceptual/preliminary aircraft design phases, the method offers the designer with the ability to gauge the sensitivity of buffet on primary design variables, such as wing sweep angle and chord to thickness ratio. Originality/value The infinite-swept wing, unsteady Reynolds-averaged Navier–Stokes equations have been successfully applied, for the first time, to identify buffeting conditions. This demonstrates the adequateness of the proposed method in the conceptual/preliminary aircraft design phases.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mojtaba Tahani ◽  
Mehran Masdari ◽  
Ali Bargestan

Purpose The overall performance of an aerial vehicle strongly depends on the specifics of the propulsion system and its position relative to the other components. The purpose of paper is this factor can be characterized by changing several contributing parameters, such as distance from the ground, fuselage and wing as well as the nacelle outlet velocity and analyzing the aerodynamic performance. Design/methodology/approach Navier–Stokes equations are discretized in space using finite volume method. A KW-SST model is implemented to model the turbulence. The flow is assumed steady, single-phase, viscous, Newtonian and compressible. Accordingly, after validation and verification against experimental and numerical results of DLRF6 configuration, the location of the propulsion system relative to configuration body is examined. Findings At the nacelle outlet velocity of V/Vinf = 4, the optimal location identified in this study delivers 16% larger lift to drag ratio compared to the baseline configuration. Practical implications Altering the position of the propulsion system along the longitudinal direction does not have a noticeable effect on the vehicle performance. Originality/value Aerial vehicles including wing-in-ground effect vehicles require thrust to fly. Generating this necessary thrust for motion and acceleration is thoroughly affected by the vehicle aerodynamics. There is a lack of rigorous understanding of such topics owing to the immaturity of science in this area. Complexity and diversity of performance variables for a numerical solution and finding a logical connection between these parameters are among the related challenges.


Author(s):  
Younes Menni ◽  
Ahmed Azzi ◽  
A. Chamkha

Purpose This paper aims to report the results of numerical analysis of turbulent fluid flow and forced-convection heat transfer in solar air channels with baffle-type attachments of various shapes. The effect of reconfiguring baffle geometry on the local and average heat transfer coefficients and pressure drop measurements in the whole domain investigated at constant surface temperature condition along the top and bottom channels’ walls is studied by comparing 15 forms of the baffle, which are simple (flat rectangular), triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, double V (or W), Z, T, G and epsilon (or e)-shaped, with the Reynolds number changing from 12,000 to 32,000. Design/methodology/approach The baffled channel flow model is controlled by the Reynolds-averaged Navier–Stokes equations, besides the k-epsilon (or k-e) turbulence model and the energy equation. The finite volume method, by means of commercial computational fluid dynamics software FLUENT is used in this research work. Findings Over the range investigated, the Z-shaped baffle gives a higher thermal enhancement factor than with simple, triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, W, T, G and e-shaped baffles by about 3.569-20.809; 3.696-20.127; 3.916-20.498; 1.834-12.154; 1.758-12.107; 7.272-23.333; 6.509-22.965; 8.917-26.463; 8.257-23.759; 5.513-18.960; 8.331-27.016; 7.520-26.592; 6.452-24.324; and 0.637-17.139 per cent, respectively. Thus, the baffle of Z-geometry is considered as the best modern model of obstacles to significantly improve the dynamic and thermal performance of the turbulent airflow within the solar channel. Originality/value This analysis reports an interesting strategy to enhance thermal transfer in solar air channels by use of attachments with various shapes


2020 ◽  
Vol 24 (6 Part A) ◽  
pp. 3795-3806
Author(s):  
Predrag Zivkovic ◽  
Mladen Tomic ◽  
Vukman Bakic

Wind power assessment in complex terrain is a very demanding task. Modeling wind conditions with standard linear models does not sufficiently reproduce wind conditions in complex terrains, especially on leeward sides of terrain slopes, primarily due to the vorticity. A more complex non-linear model, based on Reynolds averaged Navier-Stokes equations has been used. Turbulence was modeled by modified two-equations k-? model for neutral atmospheric boundary-layer conditions, written in general curvelinear non-orthogonal co-ordinate system. The full set of mass and momentum conservation equations as well as turbulence model equations are numerically solved, using the as CFD technique. A comparison of the application of linear model and non-linear model is presented. Considerable discrepancies of estimated wind speed have been obtained using linear and non-linear models. Statistics of annual electricity production vary up to 30% of the model site. Even anemometer measurements directly at a wind turbine?s site do not necessarily deliver the results needed for prediction calculations, as extrapolations of wind speed to hub height is tricky. The results of the simulation are compared by means of the turbine type, quality and quantity of the wind data and capacity factor. Finally, the comparison of the estimated results with the measured data at 10, 30, and 50 m is shown.


1989 ◽  
Vol 111 (3) ◽  
pp. 333-340 ◽  
Author(s):  
J. F. Louis ◽  
A. Salhi

The turbulent flow between two rotating co-axial disks is driven by frictional forces. The prediction of the velocity field can be expected to be very sensitive to the turbulence model used to describe the viscosity close to the walls. Numerical solutions of the Navier–Stokes equations, using a k–ε turbulence model derived from Lam and Bremhorst, are presented and compared with experimental results obtained in two different configurations: a rotating cavity and the outflow between a rotating and stationary disk. The comparison shows good overall agreement with the experimental data and substantial improvements over the results of other analyses using the k–ε models. Based on this validation, the model is applied to the flow between counterrotating disks and it gives the dependence of the radial variation of the tangential wall shear stress on Rossby number.


2017 ◽  
Vol 27 (8) ◽  
pp. 1675-1686 ◽  
Author(s):  
Guangzhi Du ◽  
Liyun Zuo

Purpose The purpose of this paper is to propose a parallel partition of unity method (PPUM) to solve the nonstationary Navier-Stokes equations. Design/methodology/approach This paper opted for the nonstationary Navier-Stokes equations by using the finite element method and the partition of unity method. Findings This paper provides one efficient parallel algorithm which reaches the same accuracy as the standard Galerkin method but saves a lot of computational time. Originality/value In this paper, a PPUM is proposed for nonstationary Navier-Stokes. At each time step, the authors only need to solve a series of independent local sub-problems in parallel instead of one global problem.


2014 ◽  
Vol 761 ◽  
pp. 241-260 ◽  
Author(s):  
G. Daschiel ◽  
V. Krieger ◽  
J. Jovanović ◽  
A. Delgado

AbstractThe development of incompressible turbulent flow through a pipe of wavy cross-section was studied numerically by direct integration of the Navier–Stokes equations. Simulations were performed at Reynolds numbers of $4.5\times 10^{3}$ and $10^{4}$ based on the hydraulic diameter and the bulk velocity. Results for the pressure resistance coefficient ${\it\lambda}$ were found to be in excellent agreement with experimental data of Schiller (Z. Angew. Math. Mech., vol. 3, 1922, pp. 2–13). Of particular interest is the decrease in ${\it\lambda}$ below the level predicted from the Blasius correlation, which fits almost all experimental results for pipes and ducts of complex cross-sectional geometries. Simulation databases were used to evaluate turbulence anisotropy and provide insights into structural changes of turbulence leading to flow relaminarization. Anisotropy-invariant mapping of turbulence confirmed that suppression of turbulence is due to statistical axisymmetry in the turbulent stresses.


Sign in / Sign up

Export Citation Format

Share Document