Theory Versus Experiment for the Rotordynamic Coefficient of Labyrinth Gas Seals: Part II—A Comparison to Experiment

1988 ◽  
Vol 110 (3) ◽  
pp. 281-287 ◽  
Author(s):  
D. W. Childs ◽  
J. K. Scharrer

An experimental test facility is used to measure the leakage and rotordynamic coefficients of teeth-on-rotor and teeth-on-stator labyrinth gas seals. The test results are presented along with the theoretically predicted values for the two seal configurations at three different radial clearances and shaft speeds to 16,000 cpm. The test results show that the theory accurately predicts the cross-coupled stiffness for both seal configurations and shows improvement in the prediction of the direct damping for the teeth-on-rotor seal. The theory fails to predict a decrease in the direct damping coefficient for an increase in the radial clearance for the teeth-on-stator seal.

1986 ◽  
Vol 108 (3) ◽  
pp. 433-437 ◽  
Author(s):  
C. C. Nelson ◽  
D. W. Childs ◽  
C. Nicks ◽  
D. Elrod

An experimental test facility is used to measure the leakage and rotordynamic coefficients of constant-clearance and convergent-tapered annular gas seals. The results are presented along with the theoretically predicted values. Of particular interest is the prediction that optimally tapered seals will have significantly larger direct stiffness than straight seals. The experimental results verify this prediction. Generally the theory does quite well, but fails to predict the large increase in direct stiffness when the fluid is prerotated.


1986 ◽  
Vol 108 (4) ◽  
pp. 599-604 ◽  
Author(s):  
D. W. Childs ◽  
J. K. Scharrer

An experimental test facility is used to measure the rotordynamic coefficients of teeth-on-rotor and teeth-on-stator labyrinth gas seals. Direct damping coefficients are presented for these seals for the first time. The results are presented for the two seal configurations at identical operating conditions, and show that, in a rotordynamic sense, the teeth-on-stator seal is more stable than the teeth-on-rotor seal, for inlet tangential velocity in the direction of rotation.


Author(s):  
Dara W. Childs ◽  
David A. Elrod ◽  
Keith Hale

Test results (leakage and rotordynamic coefficients) are presented for an interlock and tooth-on-stator labyrinth seals. Tests were carried out with air at speeds out to 16,000 cpm and supply pressures up to 7.5 bars. The rotordynamic coefficients consist of direct and cross-coupled stiffness and damping coefficients. Damping-coefficient data have not previously been presented for interlock seals. The test results support the following conclusions: (a) The interlock seal leaks substantially less than labyrinth seals. (b) Destabilizing forces are lower for the interlock seal. (c) The labyrinth seal has substantially greater direct damping values than the interlock seal. A complete rotordynamics analysis is needed to determine which type of seal would yield the best stability predictions for a given turbomachinery unit.


1986 ◽  
Vol 108 (3) ◽  
pp. 426-431 ◽  
Author(s):  
D. W. Childs ◽  
C. E. Nelson ◽  
C. Nicks ◽  
J. Scharrer ◽  
D. Elrod ◽  
...  

A facility and apparatus are described for determining the rotordynamic coefficients and leakage characteristics of annular gas seals. The apparatus has a current top speed of 8000 cpm with a nominal seal diameter of 15.24 cm (6 in.). The air-supply unit yields a seal pressure ratio of approximately 7. The inlet tangential velocity can also be controlled. An external shaker is used to excite the test rotor. The apparatus has the capability to independently calculate all rotordynamic coefficients at a given operating condition with one excitation frequency.


2002 ◽  
Vol 124 (4) ◽  
pp. 963-970 ◽  
Author(s):  
M. P. Dawson ◽  
D. W. Childs

Results are presented from tests conducted using an experimental test facility to measure the leakage and dynamic impedance of smooth and honeycomb straight-bore annular gas seals. The test seals had a 114.3 mm (4.500 in.) bore with a length-to-diameter ratio of 0.75 and a nominal radial clearance of 0.19 mm (0.0075 in.). The honeycomb cell depth for both seals was 3.10 mm (0.122 in.), and the cell width was 0.79 mm (0.031 in.). Dynamic impedance and leakage measurements are reported using air at three supply pressures out to 1.72 Mpa (250 psi), three speeds out to 20,200 rpm, and exit-to-inlet pressure ratios of 40% and 50%. Comparisons to the predictions from the two-control-volume model of Kleynhans and Childs [1] are of particular interest. This model predicts that honeycomb seals do not fit the conventional frequency independent model for smooth annular gas seals. The experimental results verify this new theory. Numerical predictions from a computer program incorporating the new two-control-volume model of Kleynhans and Childs [1] correlate well with both measured seal leakage and dynamic impedances for the honeycomb seals.


1989 ◽  
Vol 111 (2) ◽  
pp. 293-300 ◽  
Author(s):  
D. Childs ◽  
D. Elrod ◽  
K. Hale

Test results are presented for leakage and rotordynamic coefficients for seven honeycomb seals. All seals have the same radius, length, and clearance; however, the cell depths and diameters are varied. Rotordynamic data, which are presented, consist of the direct and cross-coupled stiffness coefficients and the direct damping coefficients. The rotordynamic-coefficient data show a considerable sensitivity to changes in cell dimensions; however, no clear trends are identifiable. Comparisons of test data for the honeycomb seals with labyrinth and smooth annular seals shows the honeycomb seal had the best sealing (minimum leakage) performance, followed in order by the labyrinth and smooth seals. For prerotated fluids entering the seal, in the direction of shaft rotation, the honeycomb seal has the best rotordynamic stability followed in order by the labyrinth and smooth. For no prerotation, or fluid prerotation against shaft rotation, the labyrinth seal has the best rotordynamic stability followed in order by the smooth and honeycomb seals.


Author(s):  
Dung L. Tran ◽  
Dara W. Childs ◽  
Hari Shrestha ◽  
Min Zhang

Abstract Measured results are presented for rotordynamic coefficients and mass leakage rates of a long smooth annular seal (length-to-diameter ratio L/D = 0.75, diameter D = 114.686 mm, and radial clearance Cr = 0.200 mm) tested with a mixture of silicone oil (PSF-5cSt) and air. The test seal is centered, the seal exit pressure is maintained at 6.9 bars-g while the fluid inlet temperature is controlled within 37.8–40.6 °C. It is tested with three inlet-preswirl inserts, namely, zero, medium, and high (the preswirl ratios (PSRs), i.e., the ratio between the fluid's circumferential velocity and the shaft surface's velocity, are in ranges of 0.10–0.18, 0.30–0.65, and 0.65–1.40 for zero, medium, and high preswirls, respectively), six inlet gas-volume fractions GVFi (0%, 2%, 4%, 6%, 8%, and 10%), four pressure drops PDs (20.7, 27.6, 34.5, and 41.4 bars), and three speeds ω (3, 4, and 5 krpm). The targeted test matrix could not be achieved for the medium- and high-preswirl inserts at PD ≥ 27.6 bars due to the test-rig stator's dynamic instability issues. Spargers were used to inject air into the oil, and GVFi values higher than 0.10 could not be consistently achieved because of unsteady surging flow downstream from the sparger mixing section. Leakage mass flow rate m˙ and rotordynamic coefficients are measured, and the effect of changing inlet preswirl and GVFi is studied. The test results are then compared with predictions from a two-phase, homogeneous-mixture, bulk-flow model developed in 2011. Generally, both measurements and predictions show little change in m˙ as inlet preswirl changes. Measured m˙ remains unchanged or slightly increases with increasing GVFi, but predicted m˙ decreases. Measured m˙ is comparable to predicted values but consistently lower. Dynamic-stiffness coefficients are measured using an ensemble of excitation frequencies and curve-fitted well by frequency-independent stiffness Kij, damping Cij, and virtual mass Mij coefficients. Planned tests with the medium- and high-preswirl inserts could not be accomplished at PD = 34.5 and 41.4 bars because the seal stator became unstable with any finite injection of air. The test results show that the instability arose because the seal's direct stiffness K became negative and increased in magnitude with increasing GVFi. The model predicts a drop in K as GVFi increases, but the test results dropped substantially more rapidly than predicted. Also, the model does not predict the observed strong tendency for K to drop with an increase in preswirl in moving from the zero-to-medium and medium-to-high preswirl inserts. The authors believe that the observed drop in K due to increasing GVFi is not explained by either (a) a reverse Lomakin effect from operating in the transition flow regime or (b) the predicted drop in K at higher GVFi values from the model. A separate and as yet unidentified two-phase flow phenomenon probably causes the observed results. The negative K results due to increasing GVFi and moving from the zero to medium, and medium to high preswirl observed here could explain the instability issue (sudden subsynchronous vibration) on a high-differential-pressure helico-axial multiphase pump (MPP), reported in 2013. Effective damping Ceff combines the stabilizing effect of direct damping C, the destabilizing effect of cross-coupled stiffness k, and the influence of cross-coupled mass mq. As predicted and measured, increasing inlet preswirl significantly increases k and decreases Ceff, which decreases the seal's stabilizing properties. Ceff increases with increasing GVFi—becomes more stable.


Sign in / Sign up

Export Citation Format

Share Document