Instability and Sound Emission From a Flow Over a Curved Surface

1988 ◽  
Vol 110 (4) ◽  
pp. 538-544 ◽  
Author(s):  
L. Maestrello ◽  
P. Parikh ◽  
A. Bayliss

The growth and decay of a wavepacket convecting in a boundary layer over a concave-convex surface is studied numerically using direct computations of the Navier-Stokes equations. The resulting sound radiation is computed using the linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. It is shown that on the concave portion the amplitude of the wavepacket increases and its bandwidth broadens while on the convex portion some of the components in the packet are stabilized. The pressure field decays exponentially away from the surface and then algebraically exhibiting a decay characteristic of acoustic waves in two dimensions. The far field acoustic pressure exhibits a peak at a frequency corresponding to the inflow instability frequency.

1983 ◽  
Vol 50 (2) ◽  
pp. 265-269
Author(s):  
D. Nixon

The perturbation theory for transonic flow is further developed for solutions of the Navier-Stokes equations in two dimensions or for experimental results. The strained coordinate technique is used to treat changes in location of any shock waves or large gradients.


1994 ◽  
Vol 116 (4) ◽  
pp. 202-208 ◽  
Author(s):  
K. Nakajima ◽  
Y. Kallinderis ◽  
I. Sibetheros ◽  
R. W. Miksad ◽  
K. Lambrakos

A numerical study of the nonlinear and random behavior of flow-induced forces on offshore structures and experimental verification of the results are presented. The numerical study is based on a finite-element method for the unsteady incompressible Navier-Stokes equations in two dimensions. The momentum equations combined with a pressure correction equation are solved employing fourth-order artificial dissipation with a nonstaggered grid, instead of the more commonly used staggered meshes. The solution is advanced in time with a combined explicit and implicit marching scheme. Emphasis is placed on study of reversing flows around a cylinder. Comparisons with experimental data evaluate accuracy and robustness of the method.


2001 ◽  
Vol 444 ◽  
pp. 383-407 ◽  
Author(s):  
ERCAN ERTURK ◽  
THOMAS C. CORKE

The leading-edge receptivity to acoustic waves of two-dimensional parabolic bodies was investigated using a spatial solution of the Navier–Stokes equations in vorticity/streamfunction form in parabolic coordinates. The free stream is composed of a uniform flow with a superposed periodic velocity fluctuation of small amplitude. The method follows that of Haddad & Corke (1998) in which the solution for the basic flow and linearized perturbation flow are solved separately. We primarily investigated the effect of frequency and angle of incidence (−180° [les ] α2 [les ] 180°) of the acoustic waves on the leading-edge receptivity. The results at α2 = 0° were found to be in quantitative agreement with those of Haddad & Corke (1998), and substantiated the Strouhal number scaling based on the nose radius. The results with sound waves at angles of incidence agreed qualitatively with the analysis of Hammerton & Kerschen (1996). These included a maximum receptivity at α2 = 90°, and an asymmetric variation in the receptivity with sound incidence angle, with minima at angles which were slightly less than α2 = 0° and α2 = 180°.


2006 ◽  
Author(s):  
J. C. Garci´a ◽  
J. Kubiak ◽  
F. Sierra ◽  
G. Gonza´lez ◽  
G. Urquiza

As well known steam turbines are strongly affected because of vibrations. Unstable vibrations can appear together with steady-state vibrations. We present the results of numerical computations about unstable flow and its interaction on blades of steam turbines, which can lead to unstable modes of vibration. Unstable phenomena appear as a result of interaction of blades with the stream of steam flow where the pressure field provides the force. The analysis centers particularly in the last stage or L-0 of a 110 MW turbine. Navier-Stokes equations are resolved in two dimensions using a commercial program called Fluent based on finite-volume method. A 2-D geometry model was built in order to represent the dimensional aspects of the diaphragm as well as the rotor located in the last stage of the turbine. Periodic boundary conditions were applied to both sides of the blade with the purpose of simplifying the computation avoiding resolve for the whole wheel. The computations were conducted in both modes, steady state and time dependent. The results show the distribution of pressure fields as a function of the distance to the exit edge of the diaphragm blades. Also, the pressure and velocity fields are shown through contours along the flow channel between the diaphragm blades. The paper includes the time-dependence behavior of pressure field. A Fourier analysis is used to determine the characteristic frequencies of the system, based on numerical results.


2007 ◽  
Vol 04 (04) ◽  
pp. 567-601
Author(s):  
JOSE A. LAMAS

An iterative method has been developed for the solution of the Navier–Stokes equations and implemented using finite volumes with co-located variable arrangement. A pressure equation is obtained combining algebraic momentum and mass conservation equations resulting in a self-consistent set of equations. An iterative procedure solves the pressure equation consistently with mass conservation and then updates velocities based on momentum equations without introducing velocity or pressure correction equations. The process is repeated until velocities satisfy both mass and momentum conservation. Tests demonstrate a priori pressure field solution consistent with mass conservation, and solution of hydrostatic problems in one iteration.


1994 ◽  
Vol 260 ◽  
pp. 271-298 ◽  
Author(s):  
Tim Colonius ◽  
Sanjiva K. Lele ◽  
Parviz Moin

The scattering of plane sound waves by a vortex is investigated by solving the compressible Navier–-Stokes equations numerically, and analytically with asymptotic expansions. Numerical errors associated with discretization and boundary conditions are made small by using high-order-accurate spatial differentiation and time marching schemes along with accurate non-reflecting boundary conditions. The accuracy of computations of flow fields with acoustic waves of amplitude five orders of magnitude smaller than the hydrodynamic fluctuations is directly verified. The properties of the scattered field are examined in detail. The results reveal inadequacies in previous vortex scattering theories when the circulation of the vortex is non-zero and refraction by the slowly decaying vortex flow field is important. Approximate analytical solutions that account for the refraction effect are developed and found to be in good agreement with the computations and experiments.


2001 ◽  
Vol 105 (1044) ◽  
pp. 77-84 ◽  
Author(s):  
J. Henderson ◽  
K. J. Badcock ◽  
B. E. Richards

AbstractA computational investigation of the subsonic and transonic turbulent open flow over cavities was conducted. Simulations of these oscillatory flows were generated through time-accurate solutions of the Reynolds-averaged form of the Navier-Stokes equations. The effect of turbulence was included through the k–ω model. The results presented include calculations of the acoustic pressure distributions along the cavity floor, which compare well with experiment. The results are then used to describe the behaviour of the flow.


1990 ◽  
Vol 221 ◽  
pp. 289-310 ◽  
Author(s):  
Michael J. Landman

The Navier-Stokes equations for flow in a rotating circular pipe are solved numerically, subject to imposing helical symmetry on the velocity field v = v(r, θ + αz,t). The helical symmetry is exploited by writing the equations of motion in helical variables, reducing the problem to two dimensions. A limited study of the pipe flow is made in the parameter space of the wavenumber α, and the axial and azimuthal Reynolds numbers. The steadily rotating waves previously studied by Toplosky & Akylas (1988), which arise from the linear instability of the basic steady flow, are found to undergo a series of bifurcations, through periodic to aperiodic time dependence. The relevance of these results to the mechanism of laminar-turbulent transition in a stationary pipe is discussed.


Sign in / Sign up

Export Citation Format

Share Document