An Interpolation Scheme for Plastic Yield Criteria

1979 ◽  
Vol 46 (3) ◽  
pp. 701-703 ◽  
Author(s):  
R. M. Haythornthwaite
2014 ◽  
Vol 611-612 ◽  
pp. 3-10
Author(s):  
Wilko C. Emmens ◽  
A.H. van den Boogaard

This work investigates the relation between shear stress and plastic yield considering that a crystal can only deform in a limited set of directions. The shear stress in arbitrary directions is mapped for some cases showing relevant differences. Yield loci based on mean shear stress are constructed. The Tresca yield criterion can be improved by averaging the shear stress over directions near the direction of maximum shear stress. Yield criteria based on averaging over crystallographic direction show a clear influence of the actual orientation of these direction, notably in case of few crystallographic directions. The general finding is that the higher the isotropy of a material, the lower the plane strain factor. The shape of the yield loci is comparable to those derived by the Hershey criterion with exponents lower than 3.


Author(s):  
Xian-Kui Zhu ◽  
Brian N. Leis

This paper theoretically investigates the effect of axial tensile strain on the plastic yield load-carrying capacity of pipelines. The elasticity theory and three plastic yield criteria of Tresca criterion, von Mises criterion, and Average Shear Stress Yield (ASSY) criterion are adopted in the analysis. General solutions of elastic stresses and strains are obtained for a thin-walled, end-caped pipe subjected to internal pressure and an axial strain that is used to represent the outside applied force. Based on the three plastic yield criteria, different nonlinear governing equations are obtained for determining the yield pressure, the yield hoop and axial stresses as well as the yield hoop and radial strains for the pipe. The results showed that the pressure, stresses and strains in the pipe at yield are functions of the axial strain, Poisson’s ratio, Young’s modulus, and yield strength of the pipe steel. The tensile strain limits are then obtained for different pipeline grades. It is concluded that the axial tensile strain can significantly reduce the limit load or the regulation-allowed operating pressure, and the tensile strain limits should be considered in strain-based design to prevent pipeline failure.


1979 ◽  
Vol 40 (C4) ◽  
pp. C4-226-C4-227
Author(s):  
H. A. Razafimandimby ◽  
C.E.T. Gonçalves da Silva
Keyword(s):  

2013 ◽  
Vol 37 (3) ◽  
pp. 611-620
Author(s):  
Ing-Jr Ding ◽  
Chih-Ta Yen

The Eigen-FLS approach using an eigenspace-based scheme for fast fuzzy logic system (FLS) establishments has been attempted successfully in speech pattern recognition. However, speech pattern recognition by Eigen-FLS will still encounter a dissatisfactory recognition performance when the collected data for eigen value calculations of the FLS eigenspace is scarce. To tackle this issue, this paper proposes two improved-versioned Eigen-FLS methods, incremental MLED Eigen-FLS and EigenMLLR-like Eigen-FLS, both of which use a linear interpolation scheme for properly adjusting the target speaker’s Eigen-FLS model derived from an FLS eigenspace. Developed incremental MLED Eigen-FLS and EigenMLLR-like Eigen-FLS are superior to conventional Eigen-FLS especially in the situation of insufficient data from the target speaker.


2019 ◽  
Vol 10 (4) ◽  
pp. 769-791 ◽  
Author(s):  
Norbert Ortner ◽  
Peter Wagner

Abstract Several formulas for the eigenvalues $$\lambda _j$$ λ j of the Weyl transforms $$W_\sigma $$ W σ of symbols $$\sigma $$ σ given by radially symmetric distributions are derived. These yield criteria for the boundedness and the compactness, respectively, of the pseudo-differential operators $$W_\sigma .$$ W σ . We investigate some examples by analyzing the asymptotic behavior of $$\lambda _j$$ λ j for $$j\rightarrow \infty $$ j → ∞ .


Sign in / Sign up

Export Citation Format

Share Document