Effect of Axial Tensile Strain on Yield Load-Carrying Capacity of Pipelines

Author(s):  
Xian-Kui Zhu ◽  
Brian N. Leis

This paper theoretically investigates the effect of axial tensile strain on the plastic yield load-carrying capacity of pipelines. The elasticity theory and three plastic yield criteria of Tresca criterion, von Mises criterion, and Average Shear Stress Yield (ASSY) criterion are adopted in the analysis. General solutions of elastic stresses and strains are obtained for a thin-walled, end-caped pipe subjected to internal pressure and an axial strain that is used to represent the outside applied force. Based on the three plastic yield criteria, different nonlinear governing equations are obtained for determining the yield pressure, the yield hoop and axial stresses as well as the yield hoop and radial strains for the pipe. The results showed that the pressure, stresses and strains in the pipe at yield are functions of the axial strain, Poisson’s ratio, Young’s modulus, and yield strength of the pipe steel. The tensile strain limits are then obtained for different pipeline grades. It is concluded that the axial tensile strain can significantly reduce the limit load or the regulation-allowed operating pressure, and the tensile strain limits should be considered in strain-based design to prevent pipeline failure.

Author(s):  
Xian-Kui Zhu

Strain-based design is a newer technology used in safety design and integrity management of oil and gas pipelines. In a traditional stress-based design, the axial stress is relatively small compared to the hoop stress generated by internal pressure in a line pipe, and the limit state in the pipeline is usually load-controlled. In a strain-based design, however, axial strain can be large and the load-carrying capacity of pipelines could be reduced significantly below an allowed operating pressure, where the limit state is controlled by an axial strain. In this case, the limit load analysis is of great importance. The present paper confirms that the stress, strain and load-carrying capacity of a thin-walled cylindrical pressure vessel with an axial force are equivalent those of a long pressurized pipeline with an axial tensile strain. Elastic stresses and strains in a pressure vessel are then investigated, and the limit stress, limit strain and limit pressure are obtained in terms of the classical Tresca criterion, von Mises criteria, and a newly proposed average shear stress yield criterion. The results of limit load solutions are analyzed and validated using typical experimental data at plastic yield.


Author(s):  
Thomas Westergaard Jensen ◽  
Linh Cao Hoang

The conic yield criteria for reinforced concrete slabs in bending are often used when evaluating the load‐carrying capacity of slab bridges. In the last decades, the yield criteria combined with numerical limit analysis have shown to be efficient methods to determine the load carrying capacity of slabs. However, the yield criteria overestimate the torsion capacity of slabs with high reinforcement ratios and it cannot handle slabs with construction joints. In this paper, numerical limit analysis with the conic yield criteria are compared with yield criteria based on an optimized layer model. The analysis show an increasing overestimation of the load carrying capacity for increasing reinforcement degrees. Furthermore, yield criteria, which combine the conic yield criteria with an extra linear criterion due to friction, are presented for slab bridges with construction joints. The yield criteria for slabs with construction joints are used, in combination with limit analysis, to evaluate a bridge constructed of pre‐cast overturned T‐beams and in‐situ concrete. The analysis show that the load carrying capacity is overestimated, when the construction joints are not considered in the yield criteria.


2020 ◽  
Vol 24 (5) ◽  
pp. 77-91
Author(s):  
Mohammad Javad Memar ◽  
Ali Kheyroddin ◽  
Ali Hemmati

Engineered cementitious composite (ECC) can be used for strengthening of concrete columns due to its similar structure and suitable connection to normal concrete and its special tension behavior. In this study, to analyse the columns, finite element (FE) method was used after verification by experimental results. Reference column was strengthened by normal concrete and ECC jacketing. The effects of type of jacket material, longitudinal reinforcement, compressive stress and ultimate tensile strain of ECC on variations of eccentric load-bending moment (P-M) interaction curves were investigated. Results showed that the use of ECC instead of normal concrete can increase load carrying capacity of strengthened column, due to tensile strain hardening behavior of this material. It was found that, amount of this increase depends on eccentricity of eccentric load and varying from 0.4-23%. In ECC jacketing, tensile cracks are continuous, but in concrete jacketing, there were discrete cracks and more quantity of damages. Due to higher load carrying capacity and better distribution of tensile cracks in ECC jacketing than normal concrete jacketing, the use of ECC is suitable for strengthening of reinforced concrete columns. Load carrying capacity of columns under concentric load and pure bending moment were calculated by theoretical method and the results were compared with FE.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhaoyan Cui ◽  
Liuhui Tu ◽  
Ming Xu ◽  
Zhongfan Chen ◽  
Qingfeng Xu

The dowel-type connection is widely applied in timber and bamboo structures. It is ambiguous regarding the calculation method of engineered bamboo connections completely referred to the timber design codes. The steel-to-laminated bamboo dowel connections with slotted-in steel plate tests were conducted to investigate the mechanical performance under tension based on the ASTM-D5652-15. The effects of the thickness, dowel diameter, and end distance on the yield load, ultimate load, initial stiffness, and ductility of the connections were studied. The difference in the yield load for different end distance is negligible. With the same thickness of the connections, the lower the thickness to dowel diameter, the larger the load-carrying capacity. The three typical yield modes and corresponding load-displacement curves of the connections are observed. By considering the rigid-plastic model, the theoretical equation for the connections is proposed and proven to fit well with the experimental results. It presents a better prediction for the load-carrying capacity of steel-to-laminated bamboo dowel connections with slotted-in steel plate.


2005 ◽  
Vol 10 (2) ◽  
pp. 151-160 ◽  
Author(s):  
J. Kala ◽  
Z. Kala

Authors of article analysed influence of variability of yield strength over cross-section of hot rolled steel member to its load-carrying capacity. In calculation models, the yield strength is usually taken as constant. But yield strength of a steel hot-rolled beam is generally a random quantity. Not only the whole beam but also its parts have slightly different material characteristics. According to the results of more accurate measurements, the statistical characteristics of the material taken from various cross-section points (e.g. from a web and a flange) are, however, more or less different. This variation is described by one dimensional random field. The load-carrying capacity of the beam IPE300 under bending moment at its ends with the lateral buckling influence included is analysed, nondimensional slenderness according to EC3 is λ¯ = 0.6. For this relatively low slender beam the influence of the yield strength on the load-carrying capacity is large. Also the influence of all the other imperfections as accurately as possible, the load-carrying capacity was determined by geometrically and materially nonlinear solution of very accurate FEM model by the ANSYS programme.


2005 ◽  
Vol 10 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Z. Kala

The load-carrying capacity of the member with imperfections under axial compression is analysed in the present paper. The study is divided into two parts: (i) in the first one, the input parameters are considered to be random numbers (with distribution of probability functions obtained from experimental results and/or tolerance standard), while (ii) in the other one, the input parameters are considered to be fuzzy numbers (with membership functions). The load-carrying capacity was calculated by geometrical nonlinear solution of a beam by means of the finite element method. In the case (ii), the membership function was determined by applying the fuzzy sets, whereas in the case (i), the distribution probability function of load-carrying capacity was determined. For (i) stochastic solution, the numerical simulation Monte Carlo method was applied, whereas for (ii) fuzzy solution, the method of the so-called α cuts was applied. The design load-carrying capacity was determined according to the EC3 and EN1990 standards. The results of the fuzzy, stochastic and deterministic analyses are compared in the concluding part of the paper.


2005 ◽  
Vol 33 (4) ◽  
pp. 210-226 ◽  
Author(s):  
I. L. Al-Qadi ◽  
M. A. Elseifi ◽  
P. J. Yoo ◽  
I. Janajreh

Abstract The objective of this study was to quantify pavement damage due to a conventional (385/65R22.5) and a new generation of wide-base (445/50R22.5) tires using three-dimensional (3D) finite element (FE) analysis. The investigated new generation of wide-base tires has wider treads and greater load-carrying capacity than the conventional wide-base tire. In addition, the contact patch is less sensitive to loading and is especially designed to operate at 690kPa inflation pressure at 121km/hr speed for full load of 151kN tandem axle. The developed FE models simulated the tread sizes and applicable contact pressure for each tread and utilized laboratory-measured pavement material properties. In addition, the models were calibrated and properly validated using field-measured stresses and strains. Comparison was established between the two wide-base tire types and the dual-tire assembly. Results indicated that the 445/50R22.5 wide-base tire would cause more fatigue damage, approximately the same rutting damage and less surface-initiated top-down cracking than the conventional dual-tire assembly. On the other hand, the conventional 385/65R22.5 wide-base tire, which was introduced more than two decades ago, caused the most damage.


2020 ◽  
Vol 2020 (21) ◽  
pp. 146-153
Author(s):  
Anatolii Dekhtyar ◽  
◽  
Oleksandr Babkov ◽  

Sign in / Sign up

Export Citation Format

Share Document