Failure Analysis of a Redundant Reeving Hoist

1976 ◽  
Vol 98 (4) ◽  
pp. 1166-1169
Author(s):  
A. J. Edmondson

An analysis is presented of a reeving arrangement suitable for the hoisting of critical materials requiring fail-safe criteria. The system consists of two independent wire ropes symmetrically threaded through the crown and lower blocks and reeved by a single takeup drum. The analysis provides for the load in each line of the wire rope remaining after failure of one rope occurs. The motion of the lower block and load are also provided for the variety of failure conditions considered. The analysis is useful to predict the effect of various design parameters on the integrity of system in the event of a single component failure.

1988 ◽  
Vol 110 (2) ◽  
pp. 152-160 ◽  
Author(s):  
Steven A. Velinsky

Wire strands and ropes have been used extensively for many years. However, the method for designing these elements remains highly dependent on the designer’s experience. In recent years, capabilities for the analysis of wire rope have progressed to a level where a reevaluation of wire rope design is appropriate. Recently, a linearized theory has been developed that allows a relatively simple method for analyzing complex strands and wire ropes. This theory, through substantiation with experiment, is felt to be reasonably accurate for most wire rope behavior. The present paper considers multi-lay wire strands and adds generality to the linearized theory to account for strands with any number and direction of wire lays. The geometry of wire strands is investigated in detail and a design methodology for strand geometry, including sizing the wires, is devised. The theory is then utilized to examine the effects of various design parameters on strand properties.


Author(s):  
A. Sambasiva Rao ◽  
A. K. Singh

Present work describes the failure analysis of AISI 304 stainless steel consisting of 7x19 construction lanyard wire rope which has failed during service. The microstructures and properties of failed wire rope have been investigated and compared with unused wire rope. Both the periphery and fracture surface of the wire rope display the presence of corrosion debris enriched with O and Cl. The fracture surfaces of the failed and unused wire ropes display intergranular and dimples, respectively. The lanyard wire rope has been exposed in corrosive atmosphere and failed in intergranular mode due to enrichment of O and Cl along the grain boundaries.


2021 ◽  
pp. 415-434
Author(s):  
Burak Akyuz ◽  
Nicholas Steinhoff

Abstract The types of metal components used in lifting equipment include gears, shafts, drums and sheaves, brakes, brake wheels, couplings, bearings, wheels, electrical switchgear, chains, wire rope, and hooks. This article primarily deals with many of these metal components of lifting equipment in three categories: cranes and bridges, attachments used for direct lifting, and built-in members of lifting equipment. It first reviews the mechanisms, origins, and investigation of failures. Then the article describes the materials used for lifting equipment, followed by a section explaining the failure analysis of wire ropes and the failure of wire ropes due to corrosion, a common cause of wire-rope failure. Further, it reviews the characteristics of shock loading, abrasive wear, and stress-corrosion cracking of a wire rope. Then, the article provides information on the failure analysis of chains, hooks, shafts, and cranes and related members.


2021 ◽  
Vol 18 (3) ◽  
pp. 278-284
Author(s):  
Sergio Baragetti

ABSTRACT: This paper reports the analyses carried out with the company Pedrini SpA ad unico socio, located in Carobbio degli Angeli, Bergamo (IT). Wire ropes with diamond beads, used as cutting tools in multi-wire machines for cutting blocks of stone, were considered and a failure analysis of the wire ropes was carried out. The aim of the paper is to highlight the damage mechanisms of the wire ropes to increase service life of these cutting tools. Microscope observations and the penetrating liquids method were used to analyze the damaged wire ropes. Fatigue, corrosion and contact fatigue problems were observed and the effect of the centering of the beads on the wire rope was studied.


Author(s):  
A. Sambasiva Rao ◽  
A. K. Singh

Present work describes the failure analysis of AISI 304 stainless steel consisting of 7x19 construction lanyard wire rope which has failed during service. The microstructures and properties of failed wire rope have been investigated and compared with unused wire rope. Both the periphery and fracture surface of the wire rope display the presence of corrosion debris enriched with O and Cl. The fracture surfaces of the failed and unused wire ropes display intergranular and dimples, respectively. The lanyard wire rope has been exposed in corrosive atmosphere and failed in intergranular mode due to enrichment of O and Cl along the grain boundaries.


Author(s):  
Aginaparru Sambasiva Rao ◽  
Ashok Kumar Singh

Present work describes the failure analysis of AISI 304 stainless steel lanyard wire rope which has failed during application in humid atmosphere. The wire rope has 7´19 construction which means that it consists of seven strands and each strand having 19 wires twisted in a helical fashion. The microstructures and properties of failed wire rope have been investigated and compared with unused wire rope. Both the periphery and fracture surface of the wire rope display the presence of corrosion debris enriched with O and Cl. The fracture surfaces of the failed and unused wire ropes display intergranular and dimples, respectively. The lanyard wire rope has been exposed in corrosive atmosphere and failed in intergranular mode due to enrichment of O and Cl along the grain boundaries.


Author(s):  
S. A. Velinsky

Abstract Wire strands and ropes have been used extensively for many years. However, the method for designing these elements remains highly dependent on the designer’s experience. In recent years, capabilities for the analysis of wire rope have progressed to a level where a re-evaluation of wire rope design is appropriate. Recently, a linearized theory has been developed that allows a relatively simple method for analyzing complex strands and wire ropes. This theory, through substantiation with experiment, is felt to be reasonably accurate for most wire rope behavior. The present paper considers multi-lay wire strands and adds generality to the linearized theory to account for strands with any number and direction of wire lays. The geometry of wire strands is investigated in detail and a design methodology for strand geometry, including sizing the wires, is devised. The theory is then utilized to examine the effects of various design parameters on strand properties.


Author(s):  
Michael Woo ◽  
Marcos Campos ◽  
Luigi Aranda

Abstract A component failure has the potential to significantly impact the cost, manufacturing schedule, and/or the perceived reliability of a system, especially if the root cause of the failure is not known. A failure analysis is often key to mitigating the effects of a componentlevel failure to a customer or a system; minimizing schedule slips, minimizing related accrued costs to the customer, and allowing for the completion of the system with confidence that the reliability of the product had not been compromised. This case study will show how a detailed and systemic failure analysis was able to determine the exact cause of failure of a multiplexer in a high-reliability system, which allowed the manufacturer to confidently proceed with production knowing that the failure was not a systemic issue, but rather that it was a random “one time” event.


2013 ◽  
Vol 423-426 ◽  
pp. 842-845 ◽  
Author(s):  
Zhi Hui Hu ◽  
Yong Hu ◽  
Ji Quan Hu

Based on the analysis of multi-layer winding arrangement characteristic of the wire rope in Lebus drum, the experimental study is carried on wear distribution of the wire rope in parallel grooved multi-layer winding. The result shows that, the wire rope is arranged regularly in each drum area in parallel grooved multi-layer winding; the wear of wire ropes in crossover zone is more serious than that of the parallel zone; in the same-layer wire rope winding in crossover zone, the wear damage during the wire rope winding in crossover zone at the end of each-layer drum is the most serious.


Sign in / Sign up

Export Citation Format

Share Document