scholarly journals The Application of the Collocation Method Using Hermite Cubic Splines to Nonlinear Transient One-Dimensional Heat Conduction Problems

1975 ◽  
Vol 97 (4) ◽  
pp. 562-569 ◽  
Author(s):  
T. C. Chawla ◽  
G. Leaf ◽  
W. L. Chen ◽  
M. A. Grolmes

A collocation method for the solution of one-dimensional parabolic partial differential equations using Hermite splines as approximating functions and Gaussian quadrature points as collocation points is described. The method consists of expanding dependent variables in terms of piece-wise cubic Hermite splines in the space variable at each time step. The unknown coefficients in the expansion are obtained at every time step by requiring that the resultant differential equation be satisfied at a number of points (in particular at the Gaussian quadrature points) in the field equal to the number of unknown coefficients. This collocation procedure reduces the partial differential equation to a system of ordinary differential equations which is solved as an initial value problem using the steady-state solution as the initial condition. The method thus developed is applied to a two-region nonlinear transient heat conduction problem and compared with a finite-difference method. It is demonstrated that because of high-order accuracy only a small number of equations are needed to produce desirable accuracy. The method has the desirable characteristic of an analytical method in that it produces point values as against nodal values in the finite-difference scheme.

2014 ◽  
Vol 687-691 ◽  
pp. 1522-1527
Author(s):  
Ting Jing Zhao

The purpose of this paper is to propose an efficient numerical method for solving Volterra-type integro-differential equation of the second kinds. This method based on Legendre-Gauss-Radau collocation, which is easy to be implemented especially for nonlinear and possesses high accuracy. Also, the method can be done by proceeding in time step by step. Illustrative examples have been discussed to demonstrate the validity and applicability of the technique, and the results have been compared with the exact solution.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 78
Author(s):  
Haifa Bin Jebreen ◽  
Fairouz Tchier

Herein, an efficient algorithm is proposed to solve a one-dimensional hyperbolic partial differential equation. To reach an approximate solution, we employ the θ-weighted scheme to discretize the time interval into a finite number of time steps. In each step, we have a linear ordinary differential equation. Applying the Galerkin method based on interpolating scaling functions, we can solve this ODE. Therefore, in each time step, the solution can be found as a continuous function. Stability, consistency, and convergence of the proposed method are investigated. Several numerical examples are devoted to show the accuracy and efficiency of the method and guarantee the validity of the stability, consistency, and convergence analysis.


Author(s):  
Ganesh Hegde ◽  
Madhu Gattumane

Improvement in accuracy without sacrificing stability and convergence of the solution to unsteady diffusion heat transfer problems by computational method of enhanced explicit scheme (EES), has been achieved and demonstrated, through transient one dimensional and two dimensional heat conduction. The truncation error induced in the explicit scheme using finite difference technique is eliminated by optimization of partial derivatives in the Taylor series expansion, by application of interface theory developed by the authors. This theory, in its simple terms gives the optimum values to the decision vectors in a redundant linear equation. The time derivatives and the spatial partial derivatives in the transient heat conduction, take the values depending on the time step chosen and grid size assumed. The time correction factor and the space correction factor defined by step sizes govern the accuracy, stability and convergence of EES. The comparison of the results of EES with analytical results, show decreased error as compared to the result of explicit scheme. The paper has an objective of reducing error in the explicit scheme by elimination of truncation error introduced by neglecting the higher order terms in the expansion of the governing function. As the pilot examples of the exercise, the implementation is aimed at solving one-dimensional and two-dimensional problems of transient heat conduction and compared with the results cited in the referred literature.


2019 ◽  
Vol 6 (2) ◽  
pp. a1-a7
Author(s):  
N. V. Lishchenko ◽  
V. P. Larshin ◽  
H. Krachunov

A study of a simplified mathematical model for determining the grinding temperature is performed. According to the obtained results, the equations of this model differ slightly from the corresponding more exact solution of the one-dimensional differential equation of heat conduction under the boundary conditions of the second kind. The model under study is represented by a system of two equations that describe the grinding temperature at the heating and cooling stages without the use of forced cooling. The scope of the studied model corresponds to the modern technological operations of grinding on CNC machines for conditions where the numerical value of the Peclet number is more than 4. This, in turn, corresponds to the Jaeger criterion for the so-called fast-moving heat source, for which the operation parameter of the workpiece velocity may be equivalently (in temperature) replaced by the action time of the heat source. This makes it possible to use a simpler solution of the one-dimensional differential equation of heat conduction at the boundary conditions of the second kind (one-dimensional analytical model) instead of a similar solution of the two-dimensional one with a slight deviation of the grinding temperature calculation result. It is established that the proposed simplified mathematical expression for determining the grinding temperature differs from the more accurate one-dimensional analytical solution by no more than 11 % and 15 % at the stages of heating and cooling, respectively. Comparison of the data on the grinding temperature change according to the conventional and developed equations has shown that these equations are close and have two points of coincidence: on the surface and at the depth of approximately threefold decrease in temperature. It is also established that the nature of the ratio between the scales of change of the Peclet number 0.09 and 9 and the grinding temperature depth 1 and 10 is of 100 to 10. Additionally, another unusual mechanism is revealed for both compared equations: a higher temperature at the surface is accompanied by a lower temperature at the depth. Keywords: grinding temperature, heating stage, cooling stage, dimensionless temperature, temperature model.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
R. S. Lebelo

An investigation of thermal stability in a stockpile of combustible material is considered. The combustible material is any carbon containing material that can react with oxygen trapped in a stockpile due to exothermic chemical reaction. The complicated process is modelled in a sphere and one-dimensional energy equation is used to solve the problem. The semi-implicit finite difference method (FDM) is applied to tackle the nonlinear differential equation governing the problem. Graphical solutions are displayed to describe effects of embedded kinetic parameters on the temperature of the system.


1982 ◽  
Vol 104 (3) ◽  
pp. 432-437 ◽  
Author(s):  
R. Manohar ◽  
J. W. Stephenson

A new method is proposed for obtaining finite difference equations for the solution of linear partial differential equations. The method is based on representing the approximate solution locally on a mesh element by polynomials which satisfy the differential equation. Then, by collocation, the value of the approximate solution, and its derivatives at the center of the mesh element may be expressed as a linear combination of neighbouring values of the solution.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244027
Author(s):  
Sidra Saleem ◽  
Malik Zawwar Hussain ◽  
Imran Aziz

The approximate solution of KdV-type partial differential equations of order seven is presented. The algorithm based on one-dimensional Haar wavelet collocation method is adapted for this purpose. One-dimensional Haar wavelet collocation method is verified on Lax equation, Sawada-Kotera-Ito equation and Kaup-Kuperschmidt equation of order seven. The approximated results are displayed by means of tables (consisting point wise errors and maximum absolute errors) to measure the accuracy and proficiency of the scheme in a few number of grid points. Moreover, the approximate solutions and exact solutions are compared graphically, that represent a close match between the two solutions and confirm the adequate behavior of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document