Gas Turbine Engine Mainshaft Roller Bearing-System Analysis

1973 ◽  
Vol 95 (4) ◽  
pp. 401-416 ◽  
Author(s):  
J. H. Rumbarger ◽  
E. G. Filetti ◽  
D. Gubernick

An interdisciplinary systems analysis is presented for high-speed gas turbine engine mainshaft roller bearings which will enable the designer to meet the demands for ever higher rotative speeds and operating temperatures. The latest elastohydrodynamic experimental traction data are included. Analytical results cite a need for better definition of the rolling friction portion of the total traction. A fluid mechanics model for the detailed analysis of fluid drags is developed based upon a turbulent vortex-dominated flow and includes the effect of lubricant flow through the bearing. A complete thermal analysis including dynamic and thermal effects upon bearing dimensions and resulting clearances is also included. Heat transfer coefficients are given in detail. Shaft power loss and cage slip predictions as a function of load, speed, and lubricant supply correlate well with available experimental data.

Author(s):  
D. M. Croker ◽  
T. P. Psichogios

This paper describes the operation and salient design features of a high-speed reversing gear used with the Solar 1100-hp Saturn gas-turbine Engine. Development history leading to successful marine applications is reviewed.


1980 ◽  
Vol 52 (6) ◽  
pp. 21-22

The modern aircraft gas turbine engine produces power on demand hour upon hour and day in, day out. It is one of the most extensively used types of high‐speed rotating machinery as well as one of the most efficient converters of fuel into thrust. Reliability and long life with minimum maintenance depend on efficient monitoring of engine performance and component status.


Author(s):  
J. R. Taylor

A discussion of the problems encountered in prediction of heat transfer in the turbine section of a gas turbine engine is presented. Areas of current gas turbine engine is presented. Areas of current concern to designers where knowledge is deficient or lacking are elucidated. Consideration is given to methods and problems associated with determination of heat transfer coefficients, external gas temperatures, and, where applicable, film cooling effectiveness. The paper is divided into parts dealing with turbine airfoil heat transfer, endwall heat transfer, and heat transfer in the internal cavities of cooled turbine blades. Recent literature dealing with these topics is listed.


1966 ◽  
Vol 3 (01) ◽  
pp. 42-48
Author(s):  
D. M. Croker ◽  
T. P. Psichogios

This paper describes the operation and salient design features of a high-speed reversing gear used with the Solar 1100-hp Saturn gas-turbine engine. Development history leading to successful marine applications is reviewed.


Author(s):  
A. V. Sudarev ◽  
A. A. Suryaninov ◽  
B. A. Bazarov ◽  
V. S. Ten ◽  
L. Lelait ◽  
...  

The persistent increase in demand for compact efficient power generation plants for the decentralized power supply systems applications, pipelines, micro air vehicles, electronics, etc stipulates developments of independent micro sources. Application of the micro gas turbine engine (μGTE) as an electric generator drive allows a sharp increase in the specific energy and operation independence, elimination of ambient temperature effects on the specific power, environmental friendliness improvement. However, GTE miniaturization causes its efficiency decreasing. Hence, there is a need in improvement of the micro engine of 200–3,000W power efficiency. The approach proposed is the ceramic tunnel turbomachine concept for the regenerative μGTE (MEMS-based) application [1, 2, 3] with conventional annular systems of vanes replaced with three-dimensional conic channels. The μGTE turbocompressor unit design is dependent on the conceptual arrangement approach i.e. a manner the gas turbine engine micro turbocompressor (μTC) is joined with the driven micro electric generator (μEG) assumes a great importance. Two conceptually opposite μTC concepts over the turbocompressor unit are considered: - the μTC rotor connected with the μEG rotor by an electromagnet coupling; - appropriate elements of μEG built into the rotor and stator sections of μTC. Examination of the essentially different concepts of the μEG - micro turbocompressor (μTC) arrangement demonstrated that an independent power generation, high temperature, and high speed μGTE reliable operating can be ensured by different arrangements, e.g. with the rotor and stator sections of the electric generator placed between the appropriate turbine and compressor stage devices. In this case it is easier, compared to some other approaches, to evade an unpropitious effect on the μTC rotor strength characteristics (total stress level, critical velocities within the speed operation range, radial and axial deformations, etc) imposed by sizes and mass of the contact-free electromagnet couplings elements. This inference ensues, also, from the studies conducted [4, 5].


Author(s):  
H. S. Yang ◽  
M. S. Rho ◽  
H. Y. Park ◽  
J. H. Choi ◽  
Y. B. Cha ◽  
...  

This paper shows that high-speed starter/generator system is more efficient for gas turbine engine for mobile auxiliary power unit. The system is rated at 25kW, 325Vdc, 60krpm. The system also provides 4kw to start the 100kW engine. The system consists of a high speed machine directly coupled to the gas turbine engine, a power control unit (PCU), and an electronics controller. The PCU is consist of boost converter that boost from 24V (Battery of Vehicle) to 235V for driving high-speed motor, inverter drive PMSM (Permanent Magnet Synchronous Motor), and buck converter drop the voltage to 28V. For PMSM driving the system applied SVPWM (Space Vector Pulse Width Modulation), sensorless algorithm. And then, to supply optimized power, “Constant Power Control Algorithm” is applied. For the system development, electromagnetic analysis, structure analysis, rotor dynamic analysis, and heat transfer analysis are done. After manufacturing, we have tested the system many times to produce verified performance.


1971 ◽  
Vol 93 (1) ◽  
pp. 60-68 ◽  
Author(s):  
J. Y. Liu

This paper describes an analytical investigation of the effects of misalignment and shaft speed on cylindrical roller bearing performance. Numerical results are presented for the contact load distributions and bearing fatigue lives under various amounts of misalignment for an NU308-type bearing operating under the load and speed conditions of a mainshaft bearing or a gearbox bearing in a helicopter gas turbine engine. The analysis is of use in bearing selection and in comparing different bearing designs for specific applications.


1994 ◽  
Vol 116 (2) ◽  
pp. 411-417
Author(s):  
W. D. Jones ◽  
A. R. Fletcher

The LV100 gas turbine engine is being developed for U.S. Army ground vehicle use. A unique approach for controls and accessories is being used whereby the engine has no accessory gearbox. Instead a high-speed starter/generator is mounted directly on the compressor shaft and powers all engine accessories as well as supplies the basic electrical power needs of the vehicle. This paper discusses the evolution of the electrically driven LV100 accessory system starting with the Advanced Integrated Propulsion System (AIPS) demonstrator program, through the current system to future possibilities with electric vehicle propulsion. Issues in electrical vehicle propulsion are discussed including machine type, electrical power type, and operation with a gas turbine.


Sign in / Sign up

Export Citation Format

Share Document