Optimization of 200 to 3000 W Gas Turbine MEMS Arrangement

Author(s):  
A. V. Sudarev ◽  
A. A. Suryaninov ◽  
B. A. Bazarov ◽  
V. S. Ten ◽  
L. Lelait ◽  
...  

The persistent increase in demand for compact efficient power generation plants for the decentralized power supply systems applications, pipelines, micro air vehicles, electronics, etc stipulates developments of independent micro sources. Application of the micro gas turbine engine (μGTE) as an electric generator drive allows a sharp increase in the specific energy and operation independence, elimination of ambient temperature effects on the specific power, environmental friendliness improvement. However, GTE miniaturization causes its efficiency decreasing. Hence, there is a need in improvement of the micro engine of 200–3,000W power efficiency. The approach proposed is the ceramic tunnel turbomachine concept for the regenerative μGTE (MEMS-based) application [1, 2, 3] with conventional annular systems of vanes replaced with three-dimensional conic channels. The μGTE turbocompressor unit design is dependent on the conceptual arrangement approach i.e. a manner the gas turbine engine micro turbocompressor (μTC) is joined with the driven micro electric generator (μEG) assumes a great importance. Two conceptually opposite μTC concepts over the turbocompressor unit are considered: - the μTC rotor connected with the μEG rotor by an electromagnet coupling; - appropriate elements of μEG built into the rotor and stator sections of μTC. Examination of the essentially different concepts of the μEG - micro turbocompressor (μTC) arrangement demonstrated that an independent power generation, high temperature, and high speed μGTE reliable operating can be ensured by different arrangements, e.g. with the rotor and stator sections of the electric generator placed between the appropriate turbine and compressor stage devices. In this case it is easier, compared to some other approaches, to evade an unpropitious effect on the μTC rotor strength characteristics (total stress level, critical velocities within the speed operation range, radial and axial deformations, etc) imposed by sizes and mass of the contact-free electromagnet couplings elements. This inference ensues, also, from the studies conducted [4, 5].

Author(s):  
D. M. Croker ◽  
T. P. Psichogios

This paper describes the operation and salient design features of a high-speed reversing gear used with the Solar 1100-hp Saturn gas-turbine Engine. Development history leading to successful marine applications is reviewed.


Author(s):  
Vladimir Lupandin ◽  
Martyn Hexter ◽  
Alexander Nikolayev

This paper describes a development program active at Magellan Aerospace Corporation since 2003, whereby specific modifications are incorporated into an Avco Lycoming T-53 helicopter gas turbine engine to enable it to function as a ground based Industrial unit for distributed power generation. The Lycoming T-53 is a very well proven and reliable two shaft gas turbine engine whose design can be traced back to the 1950s and the fact of its continued service to the present day is a tribute to the original design/development team. Phase 1 of the Program introduces abradable rotor path linings, blade coatings and changes to seal and blade tip clearances. Magellan has built a test cell to run the power generation units to full speed and full power in compliance with ISO 2314. In co-operation with Zorya-Mashproekt, Ukraine, the exhaust emissions of the existing combustion system for natural gas was reduced by 30%. New nozzles for low heat value fuels and for high hydrogen content fuels (up to 60% H2) have been developed. The T-53 gas turbine engine exhaust gas temperature is typically around 620 deg C, which makes it a very good candidate for co-generation and recuperated applications. As per Phase 2 of the program, the existing helicopter integral gearbox and separate industrial step-down gearbox will be replaced with single integral gearbox that will use the same lubrication oil system as the gas turbine engine. The engine power output will increase to 1200 kW at the generator terminals with an improvement to 25% efficiency ISO. Phase 3 of the Program will see the introduction of a new silo type combustion system, developed in order to utilize alternative fuels such as bio-diesel, biofuel (product of wood pyrolysis), land fill gases, syn gases etc. Phase 4 of the Program in cooperation with ORMA, Russia will introduce a recuperator into the package and is expected to realize a boost in overall efficiency to 37%. The results of testing the first two T-53 industrial gas turbine engines modified per Phase 1 will be presented.


Author(s):  
D. Salinas ◽  
E. E. Cooper

A numerical simulation of the aerothermal characteristics of a gas turbine engine test cell is presented. The three-dimensional system is modeled using the PHOENICS computational fluid dynamics code. Results predict the velocity field, temperatures, pressures, kinetic energy of turbulence, and dissipation rates of turbulent kinetic energy. Numerical results from two versions, a cartesian coordinate model and a body fitted coordinate model, are compared to experimental data. The comparison shows good quantitative and very good qualitative agreement, suggesting that numerical modeling would be useful in the preliminary design of gas turbine test facilities.


2011 ◽  
Vol 14 (4) ◽  
pp. 52-56
Author(s):  
Seong-Jin Hong ◽  
Seung-Min Kim ◽  
Sim-Kyun Yook ◽  
Sam-Sik Nam

1995 ◽  
Vol 117 (1) ◽  
pp. 213-219 ◽  
Author(s):  
M. Metwally ◽  
W. Tabakoff ◽  
A. Hamed

In this work, a study has been conducted to predict blade erosion and surface deterioration of the free power turbine of an automotive gas turbine engine. The blade material erosion model is based on three-dimensional particle trajectory simulations in the three-dimensional turbine flow field. The particle rebound characteristics after surface impacts were determined from experimental measurements of restitution ratios for blade material samples in a particulate flow tunnel. The trajectories provide the spatial distribution of the particle impact parameters over the blade surfaces. A semi-empirical erosion model, derived from erosion tests of material samples at different particulate flow conditions, is used in the prediction of blade surface erosion based on the trajectory impact data. The results are presented for the three-dimensional particle trajectories through the turbine blade passages, the particle impact locations, blade surface erosion pattern, and the associated erosion parameters. These parameters include impact velocity, impact angle, and impact frequency. The data can be used for life prediction and performance deterioration of the automotive engine under investigation.


Aero Gas Turbine engines power aircrafts for civil transport application as well as for military fighter jets. Jet pipe casing assembly is one of the critical components of such an Aero Gas Turbine engine. The objective of the casing is to carry out the required aerodynamic performance with a simultaneous structural performance. The Jet pipe casing assembly located in the rear end of the engine would, in case of fighter jet, consist of an After Burner also called as reheater which is used for thrust augmentation to meet the critical additional thrust requirement as demanded by the combat environment in the war field. The combustion volume for the After burner operation together with the aerodynamic conditions in terms of pressure, temperature and optimum air velocity is provided by the Jet pipe casing. While meeting the aerodynamic requirements, the casing is also expected to meet the structural requirements. The casing carries a Convergent-Divergent Nozzle in the downstream side (at the rear end) and in the upstream side the casing is attached with a rear mount ring which is an interface between engine and the airframe. The mechanical design parameters involving Strength reserve factors, Fatigue Life, Natural Frequencies along with buckling strength margins are assessed while the Jet pipe casing delivers the aerodynamic outputs during the engine operation. A three dimensional non linear Finite Element analysis of the Jet pipe casing assembly is carried out, considering the up & down stream aerodynamics together with the mechanical boundary conditions in order to assess the Mechanical design parameters.


Sign in / Sign up

Export Citation Format

Share Document