The asymptotic form of the laminar boundary-layer mass-transfer rate for large interfacial velocities

1962 ◽  
Vol 12 (3) ◽  
pp. 337-357 ◽  
Author(s):  
Andreas Acrivos

The convective diffusion of matter from a stationary object to a moving fluid stream is distinct from pure heat transfer because of the appearance of a finite interfacial velocity at the solid surface. This velocity is related to the rate of mass transfer by a dimensionless groupBin such a way that for −1 <B< 0 the transfer is from the bulk to the surface while for 0 <B< ∞ the transfer is from the surface to the main stream. In this paper, asymptotic solutions to the two-dimensional laminar boundary-layer equations are developed for the caseB[Gt ] 1, and for rather general systems. It is shown that in most instances the asymptotic expressions for the rate of mass transfer become accurate whenB> 3 and that the transition region between the pure heat-transfer analogy (B∼ 0) and theB[Gt ] 1 asymptote may be described by a simple graphical interpolation. These results may easily be extended to three-dimensional surfaces of revolution by the usual co-ordinate transformations of boundary-layer theory.

1985 ◽  
Vol 160 ◽  
pp. 257-279 ◽  
Author(s):  
James C. Williams

The three-dimensional steady laminar-boundary-layer equations have been cast in the appropriate form for semisimilar solutions, and it is shown that in this form they have the same structure as the semisimilar form of the two-dimensional unsteady laminar-boundary-layer equations. This similarity suggests that there may be a new type of singularity in solutions to the three-dimensional equations: a singularity that is the counterpart of the Stewartson singularity in certain solutions to the unsteady boundary-layer equations.A family of simple three-dimensional laminar boundary-layer flows has been devised and numerical solutions for the development of these flows have been obtained in an effort to discover and investigate the new singularity. The numerical results do indeed indicate the existence of such a singularity. A study of the flow approaching the singularity indicates that the singularity is associated with the domain of influence of the flow for given initial (upstream) conditions as is prescribed by the Raetz influence principle.


1970 ◽  
Vol 92 (3) ◽  
pp. 385-392 ◽  
Author(s):  
W. R. Wolfram ◽  
W. F. Walker

The present study was performed in order to determine the effects of upstream mass injection on downstream heat transfer in a reacting laminar boundary layer. The study differs from numerous previous investigations in that no similarity assumptions have been made. The complete set of coupled reacting laminar boundary layer equations with discontinuous mass injection was solved for this problem using an integral-matrix technique. The effects of mass injection on heat transfer to both sharp and blunt-nosed isothermal flat plates were studied for a Mach 2 freestream. The amount of injection and the length of the injected region were varied for each body. Heat transfer rates were found to decrease markedly in the injected region. A sharp rise in heat transfer was found immediately downstream of the region of injection followed by an asymptotic approach to the heat transfer rates calculated for the case of no injection. An insulating effect was found to persist for a considerable distance downstream from the injection region. The distance required for this insulating effect to die out was found to depend on the length of the injection region as well as the rate of injection.


1965 ◽  
Vol 87 (3) ◽  
pp. 403-408 ◽  
Author(s):  
A. R. Bu¨yu¨ktu¨r ◽  
J. Kestin

The paper presents solutions to the boundary-layer equations for heat-transfer rates into an accelerated and decelerated boundary layer in the presence of a linearly varying free-stream velocity. The equations are solved for the case of constant coefficients with frictional heat neglected, but over a range of Prandtl numbers.


1978 ◽  
Vol 88 (2) ◽  
pp. 241-258 ◽  
Author(s):  
James C. Williams

Solutions have been obtained for a family of unsteady three-dimensional boundary-layer flows which approach separation as a result of the imposed pressure gradient. These solutions have been obtained in a co-ordinate system which is moving with a constant velocity relative to the body-fixed co-ordinate system. The flows studied are those which are steady in the moving co-ordinate system. The boundary-layer solutions have been obtained in the moving co-ordinate system using the technique of semi-similar solutions. The behaviour of the solutions as separation is approached has been used to infer the physical characteristics of unsteady three-dimensional separation.In the numerical solutions of the three-dimensional unsteady laminar boundary-layer equations, subject to an imposed pressure distribution, the approach to separation is characterized by a rapid increase in the number of iterations required to obtain converged solutions at each station and a corresponding rapid increase in the component of velocity normal to the body surface. The solutions obtained indicate that separation is best observed in a co-ordinate system moving with separation where streamlines turn to form an envelope which is the separation line, as in steady three-dimensional flow, and that this process occurs within the boundary layer (away from the wall) as in the unsteady two-dimensional case. This description of three-dimensional unsteady separation is a generalization of the two-dimensional (Moore-Rott-Sears) model for unsteady separation.


Sign in / Sign up

Export Citation Format

Share Document