scholarly journals Modelling of Applied Magnetic Field and Thermal Radiations Due to the Stretching of Cylinder

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1077
Author(s):  
Muhammad Tamoor ◽  
Muhammad Kamran ◽  
Sadique Rehman ◽  
Aamir Farooq ◽  
Rewayat Khan ◽  
...  

In this study, a numerical approach was adopted in order to explore the analysis of magneto fluid in the presence of thermal radiation combined with mixed convective and slip conditions. Using the similarity transformation, the axisymmetric three-dimensional boundary layer equations were reduced to a self-similar form. The shooting technique, combined with the Range–Kutta–Fehlberg method, was used to solve the resulting coupled nonlinear momentum and heat transfer equations numerically. When physically interpreting the data, some important observations were made. The novelty of the present study lies in finding help to control the rate of heat transfer and fluid velocity in any industrial manufacturing processes (such as the cooling of metallic plates). The numerical results revealed that the Nusselt number decrease for larger Prandtl number, curvature, and convective parameters. At the same time, the skin friction coefficient was enhanced with an increase in both slip velocity and convective parameter. The effect of emerging physical parameters on velocity and temperature profiles for a nonlinear stretching cylinder has been thoroughly studied and analyzed using plotted graphs and tables.

2014 ◽  
Vol 1008-1009 ◽  
pp. 850-860 ◽  
Author(s):  
Zhou Wei Zhang ◽  
Jia Xing Xue ◽  
Ya Hong Wang

A calculation method for counter-current type coil-wound heat exchanger is presented for heat exchange process. The numerical simulation method is applied to determine the basic physical parameters of wound bundles. By controlling the inlet fluid velocity varying in coil-wound heat exchanger to program and calculate the iterative process. The calculation data is analyzed by comparison of numerical result and the unit three dimensional pipe bundle model was built. Studies show that the introduction of numerical simulation can simplify the pipe winding process and accelerate the calculation and design of overall configuration in coil-wound heat exchanger. This method can be applied to the physical modeling and heat transfer calculation of pipe bundles in coil wound heat exchanger, program to calculate the complex heat transfer changing with velocity and other parameters, and optimize the overall design and calculation of spiral bundles.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 937 ◽  
Author(s):  
Fitnat Saba ◽  
Saima Noor ◽  
Naveed Ahmed ◽  
Umar Khan ◽  
Syed Tauseef Mohyud-Din ◽  
...  

This article comprises the study of three-dimensional squeezing flow of (CNT-SiO2/H2O) hybrid nanofluid. The flow is confined inside a rotating channel whose lower wall is stretchable as well as permeable. Heat transfer with viscous dissipation is a main subject of interest. We have analyzed mathematically the benefits of hybridizing SiO 2 -based nanofluid with carbon nanotubes ( CNTs ) nanoparticles. To describe the effective thermal conductivity of the CNTs -based nanofluid, a renovated Hamilton–Crosser model (RHCM) has been employed. This model is an extension of Hamilton and Crosser’s model because it also incorporates the effect of the interfacial layer. For the present flow scenario, the governing equations (after the implementation of similarity transformations) results in a set of ordinary differential equations (ODEs). We have solved that system of ODEs, coupled with suitable boundary conditions (BCs), by implementing a newly proposed modified Hermite wavelet method (MHWM). The credibility of the proposed algorithm has been ensured by comparing the procured results with the result obtained by the Runge-Kutta-Fehlberg solution. Moreover, graphical assistance has also been provided to inspect the significance of various embedded parameters on the temperature and velocity profile. The expression for the local Nusselt number and the skin friction coefficient were also derived, and their influential behavior has been briefly discussed.


2005 ◽  
Vol 128 (4) ◽  
pp. 368-373 ◽  
Author(s):  
S. Roy ◽  
D. Anilkumar

A general analysis has been developed to study flow and heat transfer characteristics of an unsteady laminar mixed convection on a continuously moving vertical slender cylinder with surface mass transfer, where the slender cylinder is inline with the flow. The unsteadiness is introduced by the time-dependent velocity of the slender cylinder as well as that of the free stream. The calculations of momentum and heat transfer on slender cylinders considered the transverse curvature effect, especially in applications such as wire and fiber drawing, where accurate predictions are required. The governing boundary layer equations along with the boundary conditions are first cast into a dimensionless form by a nonsimilar transformation, and the resulting system of nonlinear coupled partial differential equations is then solved by an implicit finite difference scheme in combination with the quasi-linearization technique. Numerical results are presented for the skin friction coefficient and Nusselt number. The effects of various parameters on the velocity and temperature profiles are also reported here.


2001 ◽  
Vol 79 (7) ◽  
pp. 1031-1038 ◽  
Author(s):  
E M Abo-Eldahab ◽  
M S El Gendy

In the present study, free-convection and heat-transfer behavior of an electrically conducting fluid is investigated near a stretching sheet embedded in a non-Darcian medium. The temperature of the stretching sheet is varied. The sheet is stretched linearly with variable velocity and temperature. Boundary-layer equations are derived. The resulting approximate nonlinear ordinary differential equations are solved numerically. Velocity and temperature profiles as well as the local Nusselt number and skin-friction coefficient are computed for various values of the magnetic field, the Prandtl number, the free convective parameter, and the inertia parameter. PACS No.: 44.30+v


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Najiyah Safwa Khashi'ie ◽  
Norihan M. Arifin ◽  
Ioan Pop ◽  
Roslinda Nazar ◽  
Ezad Hafidz Hafidzuddin

Purpose The purpose of this study is to implement a new class of similarity transformation in analyzing the three-dimensional boundary layer flow of hybrid nanofluid. The Cu-Al2O3/water hybrid nanofluid is formulated using the single-phase nanofluid model with modified thermophysical properties. Design/methodology/approach The governing partial differential equations are reduced to the ordinary (similarity) differential equations using the proposed similarity transformation. The resulting equations are programmed in Matlab software through the bvp4c solver to obtain their solutions. The features of the reduced skin frictions and the velocity profiles for different values of the physical parameters are analyzed and discussed. Findings The non-uniqueness of the solutions is observed for certain physical parameters. The dual solutions are perceived for both permeable and impermeable cases and being the main agenda of the work. The execution of stability analysis proves that the first solution is undoubtedly stable than the second solution. An increase in the mass transpiration parameter leads to the uniqueness of the solution. Oppositely, as the injection parameter increase, the two solutions remain. However, no separation point is detected in this problem within the considered parameter values. The present results are decisive to the pair of alumina and copper only. Originality/value The present findings are original and can benefit other researchers particularly in the field of fluid dynamics. This study can provide a different insight of the transformation that is applicable to reduce the complexity of the boundary layer equations.


2017 ◽  
Vol 378 ◽  
pp. 157-174 ◽  
Author(s):  
Anantha Kumar Kempannagari ◽  
Venkata Ramana Reddy Janke ◽  
Sugunamma Vangala ◽  
Sandeep Naramgari

The intention of this analysis is to analyse the heat transfer impact on MHD ferrofluid flow over a shrinking sheet. This study is carried out under the knowledge of frictional heating, Biot number and thermal radiation. With the assist of suitable similarity transformations, the governing equations are transmuted into coupled nonlinear ODE’s and then numerically solved by R.K. Fehlberg Technique. For this study, we considered the ferrofluid. The behavior of sundry physical parameters on fluid velocity, temperature, skin friction coefficient and local Nusselt number are discussed and presented through plots and tables. Through this investigation, we found that the magnitude of fluid velocity enhances with rising values of volume fraction of nanoparticles. Also, it is found that the Eckert number has tendency to reduce the rate of heat transport.


2017 ◽  
Vol 377 ◽  
pp. 155-165 ◽  
Author(s):  
Paras Ram ◽  
Vimal Kumar Joshi ◽  
Oluwole Daniel Makinde

This article presents a numerical investigation on the convective heat transfer behaviour of time-dependent three-dimensional boundary layer flow of nano-suspension over a radially stretchable surface. The modeled set of governing nonlinear coupled ODEs is solved using the finite difference scheme followed by the shooting technique. For understanding the effects of various physical parameters such as geothermal viscosity, stretching parameter and viscous dissipation on the flow and temperature fields, magnetite-hydrocarbon nanofluid 90G is taken. The heat transfer rate and skin frictions due to the above physical parameters are also computed. The derived results show that among these parameters, Eckert number has a dominating role in the heat transfer. After a critical value of the Eckert number, the rotating surface is no longer getting cooled, rather, it takes up heat despite the fact that the surface temperature is more than the ambient temperature.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 327-330
Author(s):  
Li Yang ◽  
Bo Zhang ◽  
Jiří Jaromír Klemeš ◽  
Jie Liu ◽  
Meiyu Song ◽  
...  

Abstract Many researchers numerically investigated U-tube underground heat exchanger using a two-dimensional simplified pipe. However, a simplified model results in large errors compared to the data from construction sites. This research is carried out using a three-dimensional full-size model. A model validation is conducted by comparing with experimental data in summer. This article investigates the effects of fluid velocity and buried depth on the heat exchange rate in a vertical U-tube underground heat exchanger based on fluid–structure coupled simulations. Compared with the results at a flow rate of 0.4 m/s, the results of this research show that the heat transfer per buried depth at 1.0 m/s increases by 123.34%. With the increase of the buried depth from 80 to 140 m, the heat transfer per unit depth decreases by 9.72%.


Author(s):  
Anil K. Tolpadi ◽  
James A. Tallman ◽  
Lamyaa El-Gabry

Conventional heat transfer design methods for turbine airfoils use 2-D boundary layer codes (BLC) combined with empiricism. While such methods may be applicable in the mid span of an airfoil, they would not be very accurate near the end-walls and airfoil tip where the flow is very three-dimensional (3-D) and complex. In order to obtain accurate heat transfer predictions along the entire span of a turbine airfoil, 3-D computational fluid dynamics (CFD) must be used. This paper describes the development of a CFD based design system to make heat transfer predictions. A 3-D, compressible, Reynolds-averaged Navier-Stokes CFD solver with k-ω turbulence modeling was used. A wall integration approach was used for boundary layer prediction. First, the numerical approach was validated against a series of fundamental airfoil cases with available data. The comparisons were very favorable. Subsequently, it was applied to a real engine airfoil at typical design conditions. A discussion of the features of the airfoil heat transfer distribution is included.


2019 ◽  
Vol 24 (1) ◽  
pp. 53-66
Author(s):  
O.J. Fenuga ◽  
S.J. Aroloye ◽  
A.O. Popoola

Abstract This paper investigates a chemically reactive Magnetohydrodynamics fluid flow with heat and mass transfer over a permeable surface taking into consideration the buoyancy force, injection/suction, heat source/sink and thermal radiation. The governing momentum, energy and concentration balance equations are transformed into a set of ordinary differential equations by method of similarity transformation and solved numerically by Runge- Kutta method based on Shooting technique. The influence of various pertinent parameters on the velocity, temperature, concentration fields are discussed graphically. Comparison of this work with previously published works on special cases of the problem was carried out and the results are in excellent agreement. Results also show that the thermo physical parameters in the momentum boundary layer equations increase the skin friction coefficient but decrease the momentum boundary layer. Fluid suction/injection and Prandtl number increase the rate of heat transfer. The order of chemical reaction is quite significant and there is a faster rate of mass transfer when the reaction rate and Schmidt number are increased.


Sign in / Sign up

Export Citation Format

Share Document