convective parameter
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 12 (5) ◽  
pp. 6437-6446

The thermal and mass diffusive MHD flow through a stretching sheet has been inspected in the presence of a chemically reactive solute under convective boundary conditions in the present paper. The non-linear PDEs of the system concerning the flow, temperature, and species are recasted into a set of non-linear ODEs using ST. The consequential system of the differential equations is numerically resolved by using an implicit FDS in combination with the QL technique. The velocity ratio factor plays an important role in reducing the thickness of the velocity boundary layer, whereas the presence of magnetic parameters decreases the thickness of the velocity boundary layer profile. The study reveals that the fluid moves away from the surface during injection, resulting in a fall of the velocity gradient, whereas the opposite effect is observed in suction. The thermal and concentration boundary layer thicknesses are influenced by non-dimensional numbers, namely Prandtl and Schmidt numbers. The reaction rate parameter acts as a decelerating agent, and it thins the solute boundary layer formed in the neighborhood of the sheet. An increase in the convective parameter leads to an increase in the plate surface temperature. The present results of the paper are compared with the existing one, and good agreement is found between them.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1077
Author(s):  
Muhammad Tamoor ◽  
Muhammad Kamran ◽  
Sadique Rehman ◽  
Aamir Farooq ◽  
Rewayat Khan ◽  
...  

In this study, a numerical approach was adopted in order to explore the analysis of magneto fluid in the presence of thermal radiation combined with mixed convective and slip conditions. Using the similarity transformation, the axisymmetric three-dimensional boundary layer equations were reduced to a self-similar form. The shooting technique, combined with the Range–Kutta–Fehlberg method, was used to solve the resulting coupled nonlinear momentum and heat transfer equations numerically. When physically interpreting the data, some important observations were made. The novelty of the present study lies in finding help to control the rate of heat transfer and fluid velocity in any industrial manufacturing processes (such as the cooling of metallic plates). The numerical results revealed that the Nusselt number decrease for larger Prandtl number, curvature, and convective parameters. At the same time, the skin friction coefficient was enhanced with an increase in both slip velocity and convective parameter. The effect of emerging physical parameters on velocity and temperature profiles for a nonlinear stretching cylinder has been thoroughly studied and analyzed using plotted graphs and tables.


2021 ◽  
Vol 11 (6) ◽  
pp. 13765-13778

In this article, we study, effects of triple diffusive on a mixed convective viscous flow of an MHD Casson fluid through a vertical permeable wall numerically with convective BC’s. The governing equations are modeled and derived for the triple diffusive boundary layer flow to examine the fluid's nature under the influence of thermal conductivity and solutal diffusivity. Using an effective and suitable similarity transformation, highly non-linear coupled PDE’s are reduced to a series of coupled ODE’s and are solved by the Shooting technique with the help of the integral scheme of Runge Kutta-Fehlberg. To know the fluid properties' behavior, a numerical computation has been carried out for the non-dimensional parameters, which control the flow and demonstrated through plots such as permeability, convective parameter, Casson parameter, and buoyancy ratio parameters of the physical system. In the absence of a few non-dimensional parameters, present findings are compared with previously published work to validate our numerical scheme and found to be in good agreement with up to six decimal places of accuracy.


2020 ◽  
Vol 12 (3) ◽  
pp. 575-595 ◽  
Author(s):  
Samuel J. Childs ◽  
Russ S. Schumacher ◽  
Stephen M. Strader

AbstractSevere convective storms along the Front Range and eastern plains of Colorado frequently produce tornadoes and hail, leading to substantial damage and crop losses annually. Determination of future human exposure from these events must consider both changes in meteorological conditions and population dynamics. Projections of EF0 + tornadoes (on the enhanced Fujita scale) and severe [1.0+ in. (25.4+ mm)] hail reports out to the year 2100 are computed using convective parameter proxies generated from dynamically downscaled GFDL Climate Model, version 3 (GFDL CM3), output by the WRF Model for control and future climate scenarios. The proxies suggest that tornado and hail days in the region may increase by up to one tornado day and three hail days per year by 2100, with the greatest increases across northeastern Colorado. Using a spatially explicit Monte Carlo model, projected future frequency and spatial changes in tornadoes and hail are superimposed with population projections from the shared socioeconomic pathways (SSPs) to provide a range of possible scenarios for end-of-century human exposure to tornadoes and hailstorms. Changes in hazard frequency and spatial distribution may amplify human exposure up to 117% for tornadoes and 178% for hail in the region by 2100, although specific results are sensitive to uncertain combinations of future overlaps between hazard spatial distribution and population. Findings presented herein not only will provide the public, insurers, policy makers, land-use planners, and researchers with estimates of potential future tornado and hail impacts in the Front Range region, they also will allow the weather enterprise to better understand, prepare for, and communicate tornado and hail risk to eastern Colorado communities.


2020 ◽  
Vol 12 (1) ◽  
pp. 39-59
Author(s):  
Yohannes Yirga

This paper investigates the boundary layer analysis for magnetohydrodynamic partial slip flow and heat transfer of nanofluids through porous media over a stretching sheet with convective boundary condition. Four types of nanoparticles, namely copper, alumina, copper oxide and titanium oxide in the ethylene glycol (50%, i.e., Pr = 29.86) and water (i.e., Pr = 6.58) based fluids are studied. The governing highly nonlinear and coupled partial differential equations are solved numerically using fourth order Runge-Kutta method with shooting techniques. The velocity and temperature profiles are obtained and utilized to compute the skin friction coefficient and local Nusselt number for different values of the governing parameters viz. nanoparticle volume fraction parameter, magnetic field parameter, porosity parameter, velocity slip parameter and convective parameter. It is found that the velocity distribution of the nanofluids is a decreasing function of the magnetic parameter, porosity parameter, and velocity slip parameter. However, temperature of the nanofluids is an increasing function of magnetic field parameter, nanoparticle volume fraction parameter, porosity parameter, velocity slip parameter and convective parameter. The flow and heat transfer characteristics of the four nanofluids are compared. Moreover, comparison of the numerical results is made with previously published works for special cases and an excellent agreement is found.  Keywords: Magnetohydrodynamics, Partial Slip, Porous medium, Convective boundary, Nanofluid.


2020 ◽  
Vol 9 (1) ◽  
pp. 24-35
Author(s):  
Ali J. Chamkha ◽  
Hossam A. Nabwey ◽  
Z. M. A. Abdelrahman ◽  
A. M. Rashad

A mathematical model is accentuated the mixed bioconvective flow on a vertical wedge in a Darcy porous medium filled with a nanofluid containing both nanoparticles and gyrotactic microorganisms. Thermophoresis and Brownian motion impacts are addressed to consolidate energy and concentration equations with passivelycontrolled boundary conditions. A mixed convective parameter for the whole regime of the mixed convective is appointed. The system of governing partial differential equations is converted into a non-similar set, which are then solved by an implicit finite difference method. By taking the impacts of the varying pertinent parameters, namely, the bioconvection nanofluids and wedge angle parameters in the entire mixed convection regime, the numerical results are analyzed graphically for the dimensionless the velocity, temperature, nanoparticle volume fraction and the density motile microorganisms profiles as well as the local Nusselt and motile microorganism numbers.


Author(s):  
M. Veera Krishna ◽  
Ali J. Chamkha

AbstractThere is an intense worldwide activity in the development of instrumentation for medical diagnosis and bioscreening based on biological labeling and detection of nanoparticles. Based on this profound observation, Hall and ion slip effects on magnetohydrodynamic (MHD) free convective rotating flow of nanofluids in a porous medium past a moving vertical semi-infinite flat plate are investigated. The equations for governing flow are solved analytically by perturbation approximation. The effects of various parameters on the flow are discussed through graphs and tables. The velocity increases with Hall and ion slip parameters. An increase in the convective parameter led to amplify the thermal boundary layer thickness, but when the heat generation parameter is taken into consideration, an opposite effect occurs. The skin friction coefficient increases with an increase in nanoparticle volume fraction and it reduces with increase in Hall and ion slip parameters. Outcomes disclose that the impact of thermal convection of nanoparticles has increased the temperature distribution, which helps in destroying the cancer cells during the drug delivery process.


2019 ◽  
Vol 16 (4) ◽  
pp. 749-764 ◽  
Author(s):  
G. Sowmya ◽  
B.J. Gireesha ◽  
O.D. Makinde

Purpose The purpose of this paper is to study the thermal behaviour of a fully wet porous fin of longitudinal profile. The significance of radiative and convective heat transfer has been scrutinised along with the simultaneous variation of surface emissivity, heat transfer coefficient and thermal conductivity with temperature. The emissivity of the surface and the thermal conductivity are considered as linear functions of the local temperature between fin and the ambient. Darcy’s model was considered to formulate the heat transfer equation. According to this, the porous fin permits the flow to penetrate through it and solid–fluid interaction occurs. Design/methodology/approach Runge–Kutta–Fehlberg fourth–fifth-order method has been used to solve the reduced non-dimensionalized ordinary differential equation involving highly nonlinear terms. Findings The impact of pertinent parameters, such as convective parameter, radiative parameter, conductivity parameter, emissivity parameter, wet porous parameter, etc., on the temperature profiles were elaborated mathematically with the plotted graphs. The heat transfer from the fin enhances with the rise in convective parameter. Originality/value The wet nature of the fin enhances heat transfer and in many practical applications the parameters, such as thermal conductivity, heat transfer coefficient as well as surface emissivity, vary with temperature. Hence, the main objective of the current study is to depict the significance of simultaneous variation in surface emissivity, heat transfer coefficient and thermal conductivity with respect to temperature under natural convection and radiation condition in a totally wetted longitudinal porous fin.


2019 ◽  
Vol 8 (8) ◽  
pp. 1692-1703 ◽  
Author(s):  
Ali J. Chamkha ◽  
Hossam A. Nabwey ◽  
Z.M.A. Abdelrahman ◽  
A.M. Rashad

A mathematical model is accentuated the mixed bioconvective flow on a vertical wedge in a Darcy porous medium filled with a nanofluid containing both nanoparticles and gyrotactic microorganisms. Thermophoresis and Brownian motion impacts are addressed to consolidate energy and concentration equations with passivelycontrolled boundary conditions. A mixed convective parameter for the whole regime of the mixed convective is appointed. The system of governing partial differential equations is converted into a non-similar set, which are then solved by an implicit finite difference method. By taking the impacts of the varying pertinent parameters, namely, the bioconvection nanofluids and wedge angle parameters in the entire mixed convection regime, the numerical results are analyzed graphically for the dimensionless the velocity, temperature, nanoparticle volume fraction and the density motile microorganisms profiles as well as the local Nusselt and motile microorganism numbers.


2019 ◽  
Vol 23 (6 Part B) ◽  
pp. 3775-3783
Author(s):  
Muhammad Naveed ◽  
Zaheer Abbas ◽  
Zia Zaigham ◽  
Muhammad Sajid

An investigation is carried out to discuss the heat transfer mechanism to an electrically conducting viscous fluid on a curved stretching/shrinking surface incorporated with convective boundary condition. The impact of uniform magnetic field is also considered. The mathematical formulation for the transport of heat and flow phenomena is developed by utilizing a curvilinear co-ordinates system. The obtained sets of PDE are reconstructed into coupled non-linear differential equations by incorporating similarity transformations. The numerical solution is attained by employing the shooting method. The obtained solutions are then used to discuss the impacts of various emerging parameters on the temperature and heat transfer across the surface. Dual nature of the solutions are obtained for definite range of convective, suction, magnetic, Prandtl number and stretching or shrinking parameters. Comparison of the obtained results with the existing results for a flat sheet is found in acceptable agreement. It is noticed that with an increment in convective parameter increases the temperature of the fluid, while an increase in suction and magnetic parameters decreases the temperature of the fluid for both the solutions.


Sign in / Sign up

Export Citation Format

Share Document