Heat Transfer and Pressure Distribution in Open Cavity Flow

1967 ◽  
Vol 89 (1) ◽  
pp. 103-108 ◽  
Author(s):  
A. F. Emery ◽  
J. A. Sadunas ◽  
M. Loll

The heat transfer and pressure distribution in a rectangular cavity in a Mach 3 flow were investigated for a rectangular and an inverted-wedge recompression step. Noticeable differences between the results for the two steps were found in the recovery factors, but no real differences were detected in the heat-transfer coefficients or the velocity profiles. Heat-transfer coefficients in the cavity were determined by transient techniques and were found to range from 50 to 110 percent of the flat-plate value just prior to the expansion step.

1966 ◽  
Vol 88 (1) ◽  
pp. 101-107 ◽  
Author(s):  
Robert Gardon ◽  
J. Cahit Akfirat

Local as well as average heat transfer coefficients between an isothermal flat plate and impinging two-dimensional jets were measured for both single jets and arrays of jets. For a large and technologically important range of variables the results have been correlated in relatively simple terms, and their application to design is briefly considered.


2013 ◽  
Vol 135 (12) ◽  
Author(s):  
Chan Soo Kim ◽  
Kune Y. Suh

The effect of inclination angle of the downward facing flat plate on the interfacial wavy motion is investigated utilizing the water quenching test apparatus downward ebullient laminar transition apparatus flat surface (DELTA-FS) in a quasi-steady state. Film boiling heat transfer coefficients are obtained on the relatively long surface in the flow direction. Interfacial velocities at the various inclination angles and wall superheat conditions are determined through the analysis of the visualized continuous snapshots with 1000 fps. Visualization of the vapor film reveals that the interfacial wavelength increases and the interfacial velocity decreases as the flat plate moves from the vertical to downward facing locations. A new semi-empirical correlation is developed from the measured heat transfer coefficients and interfacial velocities. The correlation shows good agreement with the previous water test results on vertical plates. In the case of the previous other fluid experimental results on the vertical plates, the correlation overpredicts the film boiling heat transfer coefficients at the experimental condition.


1968 ◽  
Vol 90 (1) ◽  
pp. 32-36 ◽  
Author(s):  
A. F. Emery ◽  
K. F. Brettman

An approximate solution to the heat transfer coefficient on a flat plate in a linear shearing flow is given. It is shown that high shearing rates may significantly increase the local heat transfer coefficients.


Author(s):  
D. M. Kercher ◽  
R. E. Sheer ◽  
R. M. C. So

This paper describes short duration heat transfer measurements on a flat plate and a gas turbine nozzle airfoil at high free-stream temperatures. A shock tube generated the high temperature and pressure air flow. Thin-film heat gages recorded the surface heat flux. The flat plate was tested both in the shock tube and in a shock tunnel placed aft of the tube. Shock tunnel tests on the nozzle airfoil measured the local heat transfer distribution. The flat plate free-stream temperatures varied from 830 °R (460 K) to 3190 °R (1770 K) for a Tw/TT,g temperature ratio of 0.17 to 0.64 at Mach numbers from 0.12 to 1.34. The nozzle measurements at a Tw/TT,g of 0.35 to 0.39 generally indicate that pressure (concave) surface heat transfer coefficients are high, whereas the suction (convex) surface shows much lower heat transfer coefficients than a turbulent flat plate correlation.


Author(s):  
Ronald S. Bunker ◽  
Jeremy C. Bailey ◽  
Ali A. Ameri

A combined experimental and computational study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first stage blade tip surface for a geometry typical of large power generation turbines (>100MW). This paper is concerned with the design and execution of the experimental portion of the study, which represents the first reported investigation to obtain nearly full surface information on heat transfer coefficients within an environment which develops an appropriate pressure distribution about an airfoil blade tip and shroud model. A stationary blade cascade experiment has been run consisting of three airfoils, the center airfoil having a variable tip gap clearance. The airfoil models the aerodynamic tip section of a high pressure turbine blade with inlet Mach number of 0.30, exit Mach number of 0.75, pressure ratio of 1.45, exit Reynolds number based on axial chord of 2.57•106, and total turning of about 110 degrees. A hue detection based liquid crystal method is used to obtain the detailed heal transfer coefficient distribution on the blade tip surface for flat, smooth tip surfaces with both sharp and rounded edges. The cascade inlet turbulence intensity level took on values of either 5% or 9%. The cascade also models the casing recess in the shroud surface ahead of the blade. Experimental results are shown for the pressure distribution measurements on the airfoil near the tip gap, on the blade tip surface, and on the opposite shroud surface. Tip surface heat transfer coefficient distributions are shown for sharp-edge and rounded-edge tip geometries at each of the inlet turbulence intensity levels.


1980 ◽  
Vol 102 (3) ◽  
pp. 513-518 ◽  
Author(s):  
K. Hishida ◽  
M. Maeda ◽  
S. Ikai

An experimental study concerning the characteristics of heat transfer from a dry isothermal flat plate in two-component (water-air) mist flow has been performed for lower water-air mass flow ratios up to 2.3 percent. Heat transfer coefficients in mist flow increase several times corresponding to single phase coefficients with increasing mass flow ratio and free stream velocity, and with decreasing wall temperature. The measurements of droplet velocity employing laser Doppler anemometry indicate the similarity of velocity distributions in boundary layer of mist flow, which approximately fit the laminar single phase one. It is confirmed that an augmentation of heat transfer is attributable to a latent heat due to evaporation of water droplets within the boundary layer, and that, at a constant Reynolds number and wall temperature, the enhanced rates of heat transfer coefficients are linearly correlated to water mass flow rates for unit cross-sectional area.


Sign in / Sign up

Export Citation Format

Share Document