Cavitation Bubble Collapse Observations in a Venturi

1966 ◽  
Vol 88 (3) ◽  
pp. 649-657 ◽  
Author(s):  
R. D. Ivany ◽  
F. G. Hammitt ◽  
T. M. Mitchell

Bubbles collapsing in water in a cavitating venturi are photographically observed. The large pressure gradient in the venturi causes the bubbles to collapse by flattening in the direction of flow. In many cases a torus is formed, implying the existence of a central jet which, as has been suggested by other investigators, may well be the primary damaging mechanism in cavitating flows. The effect of adjacent bubbles upon each other is visually observed. Numerous bubble rebounds, even in relatively degassed water, are noted. A comparison of observed collapse rates with incompressible theory for a spherical bubble indicates that the slowing down of collapse herein observed at small bubble radii probably results primarily from the asymmetry of the collapse and perhaps also from metastable compression of vapor within the bubble.

1980 ◽  
Vol 7 (3) ◽  
pp. 219-222
Author(s):  
Don Fred ◽  
Edwin Kessler

Research has shown that it is inadvisable to spray crops during either near-absolute calms or very windy conditions; therefore, we studied weather maps and reports of herbicide accidents to investigate the hypothesis that the strong positive correlation between largescale pressure gradient and wind-speed can be used to facilitate prediction of favourable spraying times in Oklahoma. We gave detailed study to the conditions of 10 May 1977, the date in that year when the most herbicide accidents were reported. Although a relatively large pressure gradient existed, there was only weak wind at the KTVY meteorologically instrumented tower (150 km distant from the area of the accidents). We also searched for a strong relationship between herbicide accidents and the pressure gradient through tabulations of daily gradients and accident reports. Only a slight tendency is shown for accidents to occur on days with larger gradients. Research and significant findings for this study were hampered by a lack of specificity and detail in accident reports.


Author(s):  
К.В. Рождественский

В статье приводятся аналитические и численные результаты по динамике и акустике кавитационного пузырька при повышении внешнего давления. В начале рассматривается модельная задача о сжатии пузырька вплоть до коллапса при мгновенном повышении давления. При этом уравнение Рэлея-Плессета рассматривается с учетом газосодержания, поверхностного натяжения и вязкости. Акустическое давление, вызванное сжатием пузырька, записанное в безразмерном виде, определяется как с привлечением формул, так и численным путем. Показано, что если наряду с паром, внутри пузырька имеется некоторое количество газа, скорость его сжатия и акустическое давление оказываются конечными вплоть до полного схлопывания. Кроме того, возможно многократное повторение цикла расширения-сжатия с затуханием амплитуды колебаний. На каждом периоде колебаний вблизи момента времени коллапса (достижения минимального радиуса) наблюдается импульсное возрастание давления. Во второй части аналогичное исследование проводится для случая, когда кавитационный пузырек возникает в закругленной носовой части подводного крылового профиля. При этом демонстрируется зависимость динамического поведения пузырька и вызываемого им в заданной точке контура профиля акустического давления от типа профиля, его толщины и угла атаки. По периоду первого цикла схлопывания спектральные параметры акустического импульса определяются как у эквивалентного треугольного импульса. Presented in this paper are analytical and numerical results on dynamics and acoustics of a cavitation bubble in adverse external pressure gradient. First considered is a model problem of bubble collapse due to instantaneous increase of pressure. Therewith, the Rayleigh-Plesset equation is treated with account of gas content, surface tension and viscosity. Non-dimensional acoustic pressure caused by the compression of the bubble, is determined both with use of relevant formulae and numerically. It is shown that if together with vapor the bubble contains some quantity of gas, than its collapse rate and acoustic pressure during compression turn out to be finite. In addition, multiple expansion compression cycles are possible. For each period of bubble radius variation there occurs near the moment of collapse (moment of reaching a minimum radius) an impulse acoustic pressure rise. In the second part of the paper a similar investigation is carried out for the case when the bubble occurs near the rounded leading edge of a hydrofoil. Demonstrated therewith is the dependence of the bubble dynamic behavior and accompanying acoustic pressure pulses upon the foil type, thickness and angle of attack. Based on the period of the first bubble collapse cycle the spectral parameters of the induced acoustic pressure impulse are determined as for an equivalent triangular impulse.


1989 ◽  
Vol 67 (3) ◽  
pp. 1277-1285 ◽  
Author(s):  
T. S. Hakim ◽  
S. Kelly

Because of the discrepancies between the arterial and venous occlusion technique and the micropuncture technique in estimating pulmonary capillary pressure gradient, we compared measurements made with the two techniques in the same preparations (isolated left lower lobe of dog lung). In addition, we also obtained direct and reliable measurements of pressures in 0.9-mm arteries and veins using a retrograde catheterization technique, as well as a microvascular pressure made with the double-occlusion technique. The following conclusions were made from dog lobes perfused with autologous blood at normal flow rate of 500–600 ml/min and pressure gradient of 12 mmHg. 1) The double-occlusion technique measures pressure in the capillaries, 2) a small pressure gradient (0.5 mmHg) exists between 30- to 50-micron arteries and veins, 3) a large pressure gradient occurs in arteries and veins greater than 0.9 mm, 4) the arterial and venous occlusion techniques measure pressures in vessels that are less than 900 microns diam but greater than 50 microns, very likely close to 100 microns, 5) serotonin constricts arteries (larger and smaller than 0.9 mm) whereas histamine constricts veins (larger and smaller than 0.9 mm). Thus three different techniques (small retrograde catheter, arterial and venous occlusion, and micropuncture) show consistent results, confirming the presence of significant resistance in large arteries and veins with minimal resistance in the microcirculation.


2010 ◽  
Vol 132 (10) ◽  
Author(s):  
Hong Wang ◽  
Baoshan Zhu

A numerical method including a macroscopic cavitation model based on the homogeneous flow theory and a microscopic cavitation model based on the bubble dynamics is proposed for the prediction of the impact force caused by cavitation bubble collapse in cavitating flows. A large eddy simulation solver, which is incorporated with a macroscopic cavitation model, is applied to simulate the unsteady cavitating flows. Based on the simulated flow field, the evolution of the cavitation bubbles is determined by a microscopic cavitation model from the resolution of a Rayleigh–Plesset equation including the effects of the surface tension, the viscosity and compressibility of fluid, the thermal conduction and radiation, the phase transition of water vapor at the interface, and the chemical reactions. The cavitation flow around a hydrofoil is simulated to validate the macroscopic cavitation model. A good quantitative agreement is obtained between the prediction and the experiment. The proposed numerical method is applied to predict the impact force at cavitation bubble collapse on a KT section in cavitating flows. It is found that the shock pressure caused by cavitation bubble collapse is very high. The impact force is predicted qualitatively compared with the experimental data.


2008 ◽  
Vol 3 (0) ◽  
pp. S1034-S1034
Author(s):  
Naoki MIZUGUCHI ◽  
Yasuhiro SUZUKI ◽  
Nobuyoshi OHYABU

Sign in / Sign up

Export Citation Format

Share Document