Compressor Surge in Gas Turbines and Blast Furnace Compressor Installations

1965 ◽  
Vol 87 (2) ◽  
pp. 193-196
Author(s):  
R. A. Strub ◽  
P. Suter

The character of different surge cycles is described, and the corresponding influence on the dynamic loading of the blades of axial flow compressors is discussed. It is shown that essentially fatigue is governed by the rapidity of loading or unloading of the blading. Test results from an experimental 4-stage axial flow compressor showed that the induced dynamic stresses in the blades, which reach about three times the steady gas bending stresses, can lead to fatigue failure. Reference is also made to previous surge tests carried out on a gas turbine installation, which indicate that a good correlation can be expected between the calculated and the measured pressure distribution. Mention is made of the fatigue failure of the rotor blades of an industrial compressor submitted to a long period of intense surging.

2021 ◽  
Author(s):  
Alessandro Vulpio ◽  
Alessio Suman ◽  
Nicola Casari ◽  
Michele Pinelli ◽  
Craig Appleby ◽  
...  

Abstract Suspended micrometric particles are always present in the air swallowed by gas turbines. These solid particles can overpass the filters of heavy-duty gas turbines and deposit onto the internal surfaces of the compressor, leading to the overtime reduction of the machine performances, and, as a result, to the fuel consumption augmentation. A widely employed method to slow down the engine degradation is to wash the engine frequently. Over the years, the washing techniques have been continuously improved in order to reach the best compromise between low fluid consumption and high washing capabilities. In this work, an experimental campaign has been carried out to estimate the washing effectiveness on a multistage axial-flow compressor fouled with micrometric soot particles. The cleaning fluids tested in the present work were demineralized water and two cleaners provided by ZOK International Group ltd: a commercial cleaner available on the market (ZOK 27), and a new, under development, environmentally-sensitive formula. The fluids have been tested employing three droplet size distributions (with mean diameters of 20 μm, 50 μm, and 100 μm). The washing effectiveness has been assessed through image post-processing techniques by analyzing the pictures of the stator vanes and rotor blades taken in fouled and washed conditions. From the present investigation, two results arise. The finest droplets show a greater capability to remove soot deposits showing how, when the washing operation takes place during quasi-idle operating condition, the turbulent-driven motion spread smaller particles on a wider blade region. The second results is the demonstration how a environmentally-sensitive chemical formula allows the obtainment of good results in terms removal capability for the same amount of product. This finding could help the plant manager to operate the gas turbine with less constraints in terms of cost and rules.


Author(s):  
Y. Katoh ◽  
Y. Kashiwabara ◽  
H. Ishii ◽  
Y. Tsuda ◽  
M. Yanagida

This paper describes the aerodynamic blade design of a highly-loaded three-stage compressor, which is a model compressor for the front stage of an industrial gas turbine. Test results are presented that confirm design performance. Some surge and rotating stall measurement results are also discussed. The first stator blade in this test compressor operates in the high subsonic range at the inlet. To reduce the pressure loss due to blade surface shock waves, a shock-free airfoil is designed to replace the first stator blade in an NACA-65 airfoil in a three-stage compressor. Comparison of the performance of both blades shows that the shock-free airfoil blade reduces pressure loss. This paper also presents some experimental results for MCA (multi-circular arc) airfoils, which are used for first rotor blades.


1994 ◽  
Vol 116 (4) ◽  
pp. 605-611 ◽  
Author(s):  
Y. Katoh ◽  
Y. Kashiwabara ◽  
H. Ishii ◽  
Y. Tsuda ◽  
M. Yanagida

This paper describes the aerodynamic blade design of a highly loaded three-stage compressor, which is a model compressor for the front stage of an industrial gas turbine. Test results are presented that confirm design performance. Some surge and rotating stall measurement results are also discussed. The first stator blade in this test compressor operates in the high subsonic range at the inlet. To reduce the pressure loss due to blade surface shock waves, a shock-free airfoil is designed to replace the first stator blade in an NACA-65 airfoil in a three-stage compressor. Comparison of the performance of both blades shows that the shock-free airfoil blade reduces pressure loss. This paper also presents some experimental results for MCA (multicircular arc) airfoils, which are used for first rotor blades.


1970 ◽  
Vol 185 (1) ◽  
pp. 407-424 ◽  
Author(s):  
H. R. M. Craig ◽  
H. J. A. Cox

A comprehensive method of estimating the performance of axial flow steam and gas turbines is presented, based on analysis of linear cascade tests on blading, on a number of turbine test results, and on air tests of model casings. The validity of the use of such data is briefly considered. Data are presented to allow performance estimation of actual machines over a wide range of Reynolds number, Mach number, aspect ratio and other relevant variables. The use of the method in connection with three-dimensional methods of flow estimation is considered, and data presented showing encouraging agreement between estimates and available test results. Finally ‘carpets’ are presented showing the trends in efficiencies that are attainable in turbines designed over a wide range of loading, axial velocity/blade speed ratio, Reynolds number and aspect ratio.


1960 ◽  
Vol 82 (1) ◽  
pp. 19-26
Author(s):  
F. Baumgartner ◽  
R. Amsler

A method is presented to determine the shape of stationary nozzle blades and rotor blades for an axial-flow-type turbine in a generally consistent manner based on the concept of aerodynamic blade loading. The mean blade load is a typical design parameter which predominantly determines the blade curvature. It depends in particular on the rate of change of momentum across the blade row. By applying the design method, airfoil shapes are obtained which satisfy the momentum requirements regardless of what blade-load distribution is assumed as long as the mean blade load remains constant. A specific application of the design method is described and test data are presented which show that good agreement between design goal and test results was achieved.


1947 ◽  
Vol 157 (1) ◽  
pp. 471-482 ◽  
Author(s):  
D. M. Smith

The paper reviews the technical development of the F2 jet propulsion engine, an axial flow gas turbine designed and manufactured by the Metropolitan-Vickers Electrical Company, Limited, under contract from the Ministry of Aircraft Production. An account is given of the preliminary work in 1938–9, in collaboration with the Royal Aircraft Establishment, on gas turbines for aircraft propulsion. The development of a simple jet engine of the axial flow type was started in July 1940. The first engine ran on bench test in December 1941. The first flights took place in June 1943 on a flying testbed, and in November 1943 on a jet-propelled aircraft. The evolution of engines of this type, leading up to the current F2/4 jet propulsion engine, is described. Each main component of the engine—the axial flow compressor, the annular combustion chamber and the high temperature turbine—necessitated extensive development work in fields previously unexplored; the methods used in the development of these and other components are explained. The F2 engine was the first British jet propulsion engine of axial flow type, and it is also unique amongst British engines in the straight-through design and annular combustion chamber that gives an exceptionally low frontal area.


Author(s):  
J. P. Smed ◽  
F. A. Pisz ◽  
J. A. Kain ◽  
N. Yamaguchi ◽  
S. Umemura

As part of the WESTINGHOUSE-MHI 501F Development Program, a new 16 stage axial flow compressor has been designed. Reported here are elements of the aerodynamic and mechanical design as well as general design features. Overall performance test results are also presented which indicate that the compressor met or exceeded all expectations amenable to measurement during the full load shop test program.


1993 ◽  
Vol 115 (1) ◽  
pp. 197-206 ◽  
Author(s):  
S. R. Manwaring ◽  
S. Fleeter

A series of experiments is performed in an extensively instrumented axial flow research compressor to investigate the fundamental flow physics of wake-generated periodic rotor blade row unsteady aerodynamics at realistic values of the reduced frequency. Unique unsteady data are obtained that describe the fundamental unsteady aerodynamic gust interaction phenomena on the first-stage rotor blades of a research axial flow compressor generated by the wakes from the inlet guide vanes. In these experiments, the effects of steady blade aerodynamic loading and the aerodynamic forcing function, including both the transverse and chordwise gust components, and the amplitude of the gusts, are investigated and quantified.


1996 ◽  
Author(s):  
Katsushi Nagai ◽  
Kazuaki Ikesawa ◽  
Takao Sugimoto ◽  
Toshinao Tanaka ◽  
Hiroshi Umino ◽  
...  

A highly loaded two stage transonic axial flow compressor, which forms a front stages of a multi stage compressor for industrial gas turbines, has been designed and tested. Overall pressure ratio is 2.25 and the first stage rotor tip Mach number is 1.15. Two airfoil types, Double Circular Arc airfoil and Multi Circular Arc airfoil, were designed for a transonic rotor blade under the same condition. MCA blade design method was devised and introduced. The blade design relied heavily on CFD techniques using a Euler code and a Navier Stokes code to cope with a precise treatment. The rig test was conducted by our compressor test facility to verify a validity of the transonic compressor design method and to compare the performance of the DCA and the MCA airfoils. This report describes the aerodynamic design and the test results as well as the test facility and instrumentation.


1992 ◽  
Vol 114 (2) ◽  
pp. 271-276 ◽  
Author(s):  
J. P. Smed ◽  
F. A. Pisz ◽  
J. A. Kain ◽  
N. Yamaguchi ◽  
S. Umemura

As part of the Westinghouse-MHI 501F development program, a new 16-stage axial flow compressor has been designed. Reported here are elements of the aerodynamic and mechanical design as well as general design features. Overall performance test results are also presented, which indicate that the compressor met or exceeded all expectations amenable to measurement during the full load shop test program.


Sign in / Sign up

Export Citation Format

Share Document