Heat Transfer Characterization of Two Isothermal Circular Cylinders in Proximity

2009 ◽  
Vol 132 (3) ◽  
Author(s):  
Taeheon Han ◽  
Kyung-Soo Yang ◽  
Kyongjun Lee

Heat transfer on two nearby isothermal circular cylinders of equal diameter immersed in a uniform crossflow at Re=120 and Pr=0.7 was numerically studied. We consider all possible arrangements of the two cylinders in terms of the distance between the two cylinders and the inclination angle with respect to the direction of the main flow. It turns out that significant changes in the characteristics of heat transfer are noticed depending on how they are positioned, resulting in quantitative changes in heat transfer coefficients of both cylinders. Collecting all of the numerical results obtained, we propose a contour diagram for averaged Nusselt number for each of the two cylinders. The geometrical symmetry implied in the flow configuration allows one to use those diagrams to estimate heat transfer rates on two isothermal circular cylinders of equal diameter arbitrarily positioned in physical space with respect to the main flow direction.

1992 ◽  
Vol 114 (4) ◽  
pp. 847-857 ◽  
Author(s):  
J. H. Wagner ◽  
B. V. Johnson ◽  
R. A. Graziani ◽  
F. C. Yeh

Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large-scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges that are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat transfer increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.


Author(s):  
Vikrant Saxena ◽  
Hasan Nasir ◽  
Srinath V. Ekkad

A comprehensive investigation of the effect of various tip sealing geometries is presented on the blade tip leakage flow and associated heat transfer of a scaled up HPT turbine blade in a low-speed wind tunnel facility. The linear cascade is made of four blades with the two corner blades acting as guides. The tip section of a HPT first stage rotor blade is used to fabricate the 2-D blade. The wind tunnel accommodates an 116° turn for the blade cascade. The mainstream Reynolds number based on the axial chord length at cascade exit is 4.83 × 105. The upstream wake effect is simulated with a spoked wheel wake generator placed upstream of the cascade. A turbulence grid placed even farther upstream generates the required free-stream turbulence of 4.8%. The center blade has a tip clearance gap of 1.5625% with respect to the blade span. Static pressure measurements are obtained on the blade surface and the shroud. The effect of crosswise trip strips to reduce leakage flow and associated heat transfer is investigated with strips placed along the leakage flow direction, against the leakage flow and along the chord. Cylindrical pin fins and pitch variation of strips over the tip surface are also investigated. Detailed heat transfer measurements are obtained using a steady state HSI-based liquid crystal technique. The effect of periodic unsteady wake effect is also investigated by varying the wake Strouhal number from 0. to 0.2, and to 0.4. Results show that the trip strips placed against the leakage flow produce the lowest heat transfer on the tips compared to all the other cases with a reduction between 10–15% compared to the plain tip. Results also show that the pitch of the strips has a small effect on the overall reduction. Cylindrical pins fins and strips along the leakage flow direction do not decrease the heat transfer coefficients and in some cases enhance the heat transfer coefficients by as much as 20%.


2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Devanand D. Chillal ◽  
◽  
Uday C. Kapale ◽  
N.R. Banapurmath ◽  
T. M. Yunus Khan ◽  
...  

The work presented is an effort to realize the changes occurring for convective coefficients of heat transfer in STHX fitted with inclined baffles. Effort has been undertaken using Fluent, a commercially available CFD code ona CAD model of small STHX with inclined baffles with cold liquid flowing into the tubes and hot liquid flowing in the shell. Four sets of CFD analysis have been carried out. The hot liquid flow rate through shell compartments varied from 0.2 kg/sec to 0.8 kg/sec in steps of 0.2 kg/sec, while keeping the cold liquid flow condition in tube at 0.4 kg/sec constant. Heat transfer rates, compartment temperatures, and overall heat transfer coefficients, for cold liquid and hot liquid, were studied. The results given by the software using CFD approach were appreciable and comparatively in agreement with the results available by the experimental work, which was undertaken for the same set of inlet pressure conditions, liquid flow rates, and inlet temperatures of liquid for both hot and cold liquids. The experimental output results were also used to validate the results given by the CFD software. The results from the CFD analysis were further used to conclude the effect of baffle inclination on heat duty. The process thus followed also helped realize the effects of baffle inclination on convective heat transfer coefficient of the liquid flow through the shell in an inclined baffle shell and tube heat exchanger. The temperature plots for both cold and hot liquid were also generated for understanding the compartmental temperature distributions inclusive of the inlet and outlet compartments. The heat duty for a heat exchanger has been found to increase with the increase in baffle inclinations from zero degree to 20 degrees. Likewise, the convective heat transfer coefficients have also been found to increase with the increase in baffle inclinations.


Author(s):  
Rami Homsi ◽  
MD Islam ◽  
Yap Yit Fatt ◽  
Isam Janajreh

Abstract Heated and unheated flows with forced convection over two fixed circular cylinders in tandem are studied numerically for 80 ≤ Re ≤ 250 and 1 ≤ T* ≤ 2.3. Three different spacing ratios (L/D) = [2, 4, 8] are considered under three heating conditions. The scenarios considered are (1) heated upstream and unheated downstream cylinders, (2) unheated upstream and heated downstream cylinders and (3) heated upstream and downstream cylinders. These scenarios represent the limiting case for a cross-flow heat exchanger, where the downstream tubes are at increasingly lower or higher temperature for cooling or heating, respectively. The global aerodynamic forces on the cylinder as vortices shed was investigated. The flow is visualized by plotting the streamlines, temperature fields, and velocity magnitude contours for the different spacing ratios and compared to the flow regimes in literature namely, Extended-body, Reattachment, and Co-shedding regimes. The drag and surface heat transfer coefficients are analyzed for different scenarios. The effect of heating on the fluid properties and the resulted wakes in the flow are found to be strongly influenced by Re and L/D. The scenario of heated upstream and unheated downstream cylinders was found to increase the mean drag coefficient Cd on the upstream cylinder for L/D = 2 & 4 but is not as evident for the downstream cylinder. The heat transfer coefficient h on the upstream cylinder remained approximately the same regardless of a heated or unheated downstream cylinder. In contrast, h of the downstream cylinder decreases for the scenario of heated upstream and downstream cylinder.


Author(s):  
Mohammad Taslim ◽  
Joseph S. Halabi

Local and average heat transfer coefficients and friction factors were measured in a test section simulating the trailing edge cooling cavity of a turbine airfoil. The test rig with a trapezoidal cross sectional area was rib-roughened on two opposite sides of the trapezoid (airfoil pressure and suction sides) with tapered ribs to conform to the cooling cavity shape and had a 22-degree tilt in the flow direction upstream of the ribs that affected the heat transfer coefficients on the two rib-roughened surfaces. The radial cooling flow traveled from the airfoil root to the tip while exiting through 22 cooling holes along the airfoil trailing edge. Two rib geometries, with and without the presence of the trailing-edge cooling holes, were examined. The numerical model contained the entire trailing-edge channel, ribs and trailing-edge cooling holes to simulate exactly the tested geometry. A pressure-correction based, multi-block, multi-grid, unstructured/adaptive commercial software was used in this investigation. Realizable k–ε turbulence model in conjunction with enhanced wall treatment approach for the near wall regions, was used for turbulence closure. The applied thermal boundary conditions to the CFD models matched the test boundary conditions. Comparisons are made between the experimental and numerical results.


1990 ◽  
Vol 112 (3) ◽  
pp. 234-240 ◽  
Author(s):  
G. L. Lehmann ◽  
S. J. Kosteva

An experimental study of forced convection heat transfer is reported. Direct air cooling of an electronics packaging system is modeled by a channel flow, with an array of uniformly sized and spaced elements attached to one channel wall. The presence of a single or complete row of longitudinally finned heat sinks creates a modified flow pattern. Convective heat transfer rates at downstream positions are measured and compared to that of a plain array (no heat sinks). Heat transfer rates are described in terms of adiabatic heat transfer coefficients and thermal wake functions. Empirical correlations are presented for both variations in Reynolds number (5000 < Re < 20,000) and heat sink geometry. It is found that the presence of a heat sink can both enhance and degrade the heat transfer coefficient at downstream locations, depending on the relative position.


Author(s):  
Kazuya Tatsumi ◽  
Shintaro Matsuzaki ◽  
Kazuyoshi Nakabe

The effects of the attack-angle of the fin notch array against the main flow and size of the clearance at the fin-tip on the heat transfer and pressure loss performances of a channel with cut-fins (parallel fins with square notches) mounted on the bottom wall were evaluated in the present article. Three-dimensional numerical simulations, PIV measurements and heat transfer experiments employing a modified single-blow method were conducted to discuss these characteristics. Larger pressure loss reduction was obtained by the cut-fins case compared with the plain-fins case (parallel fins without notches) under smaller clearance conditions, while smaller thermal resistance was achieved with larger clearance. A maximum peak, therefore, appeared in the overall performance in relation with the clearance size. Larger heat transfer coefficients were obtained with smaller attack-angles of the notch array in both experimental and numerical results, particularly under larger Reynolds number conditions. This was due to the spanwise flow generated in the area adjacent to the notch, by which renewal of the thermal boundary layer was effectively produced at the trailing edge of the notch.


2004 ◽  
Vol 126 (1) ◽  
pp. 130-138 ◽  
Author(s):  
Vikrant Saxena ◽  
Hasan Nasir ◽  
Srinath V. Ekkad

A comprehensive investigation of the effect of various tip sealing geometries is presented on the blade tip leakage flow and associated heat transfer of a scaled up HPT turbine blade in a low-speed wind tunnel facility. The linear cascade is made of four blades with the two corner blades acting as guides. The tip section of a HPT first stage rotor blade is used to fabricate the two-dimensional blade. The wind tunnel accommodates an 116 deg turn for the blade cascade. The mainstream Reynolds number based on the axial chord length at cascade exit is 4.83×105. The upstream wake effect is simulated with a spoked wheel wake generator placed upstream of the cascade. A turbulence grid placed even farther upstream generates the required freestream turbulence of 4.8%. The center blade has a tip clearance gap of 1.5625% with respect to the blade span. Static pressure measurements are obtained on the blade surface and the shroud. The effect of crosswise trip strips to reduce leakage flow and associated heat transfer is investigated with strips placed along the leakage flow direction, against the leakage flow and along the chord. Cylindrical pin fins and pitch variation of strips over the tip surface are also investigated. Detailed heat transfer measurements are obtained using a steady-state HSI-based liquid crystal technique. The effect of periodic unsteady wake effect is also investigated by varying the wake Strouhal number from 0. to 0.2, and to 0.4. Results show that the trip strips placed against the leakage flow produce the lowest heat transfer on the tips compared to all the other cases with a reduction between 10–15% compared to the plain tip. Results also show that the pitch of the strips has a small effect on the overall reduction. Cylindrical pins fins and strips along the leakage flow direction do not decrease the heat transfer coefficients and in some cases enhance the heat transfer coefficients by as much as 20%.


Author(s):  
Ronald S. Bunker ◽  
Sarah J. Osgood

An experimental study has been performed to investigate the convective heat transfer coefficients and friction factors present in square cooling passages with non-normal, or leaned turbulators. The standard form of turbulated channels used in virtually all turbine vanes and blades is that of nearly square turbulators, or rib rougheners, cast in an orthogonal orientation to the channel surface. While turbulators may be oriented at an angle to the bulk flow direction, the projection of the turbulator is still normal to the cast surface. Non-orthogonal lean angle presents an additional variable which may be used to improve or optimize performance, a factor hitherto not investigated. The present study has performed a series of experiments measuring both detailed heat transfer coefficient distributions and friction factors within a square channel with flow Reynolds numbers up to 400,000. Turbulator lean angles of 45, 22.5, 0, −22.5, and −45-degrees to the surface normal have been tested with a turbulator configuration of 45-degree orientation to the bulk flow, pitch-to-height ratio of 10, and height-to-hydraulic diameter ratio of 0.1. Results show up to a 20% reduction in heat transfer capability, and as much as 30% increase in friction factor. The local distributions of heat transfer are also more variable with lean angle. The conclusion is made that normal turbulators provide the best overall performance.


Author(s):  
J. H. Wagner ◽  
B. V. Johnson ◽  
R. A. Graziani ◽  
F. C. Yeh

Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multi–pass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant–to–wall temperature ratio, Rossby number, Reynolds number and radius–to–passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat transfer increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces, where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.


Sign in / Sign up

Export Citation Format

Share Document