Free In-Plane Vibration Analysis of Rectangular Plates With Elastically Point-Supported Edges

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Jingtao Du ◽  
Zhigang Liu ◽  
Wen L. Li ◽  
Xuefeng Zhang ◽  
Wanyou Li

In comparison with the transverse vibrations of rectangular plates, far less attention has been paid to the in-plane vibrations even though they may play an equally important role in affecting the vibrations and power flows in a built-up structure. In this paper, a generalized Fourier method is presented for the in-plane vibration analysis of rectangular plates with any number of elastic point supports along the edges. Displacement constraints or rigid point supports can be considered as the special case when the stiffnesses of the supporting springs tend to infinity. In the current solution, each of the in-plane displacement components is expressed as a 2D Fourier series plus four auxiliary functions in the form of the product of a polynomial times a Fourier cosine series. These auxiliary functions are introduced to ensure and improve the convergence of the Fourier series solution by eliminating all the discontinuities potentially associated with the original displacements and their partial derivatives along the edges when they are periodically extended onto the entire x-y plane as mathematically implied by the Fourier series representation. This analytical solution is exact in the sense that it explicitly satisfies, to any specified accuracy, both the governing equations and the boundary conditions. Numerical examples are given about the in-plane modes of rectangular plates with different edge supports. It appears that these modal data are presented for the first time in literature, and may be used as a benchmark to evaluate other solution methodologies. Some subtleties are discussed about corner support arrangements.

2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Runze Zhang ◽  
Yipeng Cao ◽  
Wenping Zhang ◽  
Hongbo Li ◽  
Xiangmei Li

This paper presents a free vibration analysis of three-dimensional coupled beams with arbitrary coupling angle using an improved Fourier method. The displacement and rotation of the coupled beams are represented by the improved Fourier series which consisted of Fourier cosine series and closed-form auxiliary functions. The coupling and boundary conditions are accomplished by setting coupling and boundary springs and assigning corresponding stiffness values to the springs. Modal parameters are determined through the application of Rayleigh-Ritz procedure to the system energy formulation. The accuracy and convergence of the present method are demonstrated by finite element method (FEM) result. Investigation on vibration of the propulsion shafting structure shows the extensive applicability of present method. The studies on the vibration suppression devices are also reported.


Fractals ◽  
2020 ◽  
Vol 28 (04) ◽  
pp. 2050063
Author(s):  
XUEZAI PAN ◽  
MINGGANG WANG ◽  
XUDONG SHANG

The purpose of this research is to show how the complicated and irregular fractal interpolation function is represented by Fourier series. First, on the closed interval [0,1], even prolongation is operated to the fractal interpolation function generated by iterated function system constituted by affine transform and Fourier cosine series representation of fractal interpolation function is proved. Second, for fractal interpolation function, odd prolongation is done and Fourier sine series formula of fractal interpolation function is proved. Final, Fourier series expansion of fractal interpolation function on the closed interval [Formula: see text] is proved. The result shows that complex fractal interpolation function can be represented by Fourier sine series and Fourier cosine series, so relatively simple Fourier series can be used to represent relatively complicated fractal interpolation function.


2016 ◽  
Vol 2016 ◽  
pp. 1-30 ◽  
Author(s):  
Dongyan Shi ◽  
Yunke Zhao ◽  
Qingshan Wang ◽  
Xiaoyan Teng ◽  
Fuzhen Pang

This paper presents free vibration analysis of open and closed shells with arbitrary boundary conditions using a spectro-geometric-Ritz method. In this method, regardless of the boundary conditions, each of the displacement components of open and closed shells is represented simultaneously as a standard Fourier cosine series and several auxiliary functions. The auxiliary functions are introduced to accelerate the convergence of the series expansion and eliminate all the relevant discontinuities with the displacement and its derivatives at the boundaries. The boundary conditions are modeled using the spring stiffness technique. All the expansion coefficients are treated equally and independently as the generalized coordinates and determined using Rayleigh-Ritz method. By using this method, a unified vibration analysis model for the open and closed shells with arbitrary boundary conditions can be established without the need of changing either the equations of motion or the expression of the displacement components. The reliability and accuracy of the proposed method are validated with the FEM results and those from the literature.


2019 ◽  
Vol 50 (6) ◽  
pp. 176-194
Author(s):  
Kavikant Mahapatra ◽  
SK Panigrahi

The generation of in-plane vibration in plates is an important issue and frequently occurs due to the presence of excitations in the ship’s hull due to turbulent fluid flows, turbulent airflow excitation on aerospace structures, gear system subjected to axial excitation, assemblies housing piezoelectric crystals and sandwiched plates, and so on. The present analysis aims to establish a universal and numerically efficient method for determination of in-plane vibration characteristics of isotropic rectangular plates both for conventional and general boundary conditions. The new in-plane Fourier series and displacement function of the plate have been developed using beam displacement functions in x and y directions, respectively, under in-plane condition. A modified Fourier series assumption for the in-plane beam displacement has been utilised and further developed as plate displacement function. The computational efficiency of the present method is compared in terms of convergence of natural frequency parameter, speed of execution and manual convenience to reduce human errors with the frequently used Fourier series method by various researchers. Rayleigh–Ritz procedure has been applied to determine the in-plane natural frequencies. The mode shapes for few conventional and generally varying boundary conditions have been presented and analysed. The dynamic response has been obtained and analysed in terms of the in-plane mobility and power flow characteristics of the plate under varying boundary conditions. The validity of results obtained by the current method has shown excellent accuracy and faster convergence with the existing results. The present results can provide a benchmark to analyse the dynamic in-plane response of plate systems being used for built-up structures in real engineering applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Xue Kai ◽  
Wang Jiufa ◽  
Li Qiuhong ◽  
Wang Weiyuan ◽  
Wang Ping

An analysis method is proposed for the vibration analysis of the Mindlin rectangular plates with general elastically restrained edges, in which the vibration displacements and the cross-sectional rotations of the mid-plane are expressed as the linear combination of a double Fourier cosine series and four one-dimensional Fourier series. The use of these supplementary functions is to solve the possible discontinuities with first derivatives at each edge. So this method can be applied to get the exact solution for vibration of plates with general elastic boundary conditions. The matrix eigenvalue equation which is equivalent to governing differential equations of the plate can be derived through using the boundary conditions and the governing equations based on Mindlin plate theory. The natural frequencies can be got through solving the matrix equation. Finally the numerical results are presented to validate the accuracy of the method.


2013 ◽  
Vol 572 ◽  
pp. 489-493 ◽  
Author(s):  
Kai Xue ◽  
Jiu Fa Wang ◽  
Qiu Hong Li ◽  
Wei Yuan Wang ◽  
Ping Wang

An analysis method has been proposed for the vibration analysis of the Mindlin rectangular plates with general elastically boundary supports, in which the vibration displacements and the cross-sectional rotations of the mid-plane are sought as the linear combination of a double Fourier cosine series and auxiliary series functions. The use of these supplementary functions is to solve the potential discontinuity associated with the x-derivative and y-derivative of the original function along the four edges, so this method can be applied to get the exact solution. Finally the numerical results are presented to validate the correct of the method.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xianjie Shi ◽  
Dongyan Shi ◽  
Zhengrong Qin ◽  
Qingshan Wang

In comparison with the out-of-plane vibrations of annular plates, far less attention has been paid to the in-plane vibrations which may also play a vital important role in affecting the sound radiation from and power flows in a built-up structure. In this investigation, a generalized Fourier series method is proposed for the in-plane vibration analysis of annular plates with arbitrary boundary conditions along each of its edges. Regardless of the boundary conditions, the in-plane displacement fields are invariantly expressed as a new form of trigonometric series expansions with a drastically improved convergence as compared with the conventional Fourier series. All the unknown expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz technique. Unlike most of the existing studies, the presented method can be readily and universally applied to a wide spectrum of in-plane vibration problems involving different boundary conditions, varying material, and geometric properties with no need of modifying the basic functions or adapting solution procedures. Several numerical examples are presented to demonstrate the effectiveness and reliability of the current solution for predicting the in-plane vibration characteristics of annular plates subjected to different boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document