Endothelial Cell Morphologic Response to Asymmetric Stenosis Hemodynamics: Effects of Spatial Wall Shear Stress Gradients

2010 ◽  
Vol 132 (8) ◽  
Author(s):  
Leonie Rouleau ◽  
Monica Farcas ◽  
Jean-Claude Tardif ◽  
Rosaire Mongrain ◽  
Richard L. Leask

Endothelial cells are known to respond to hemodynamic forces. Their phenotype has been suggested to differ between atheroprone and atheroprotective regions of the vasculature, which are characterized by the local hemodynamic environment. Once an atherosclerotic plaque has formed in a vessel, the obstruction creates complex spatial gradients in wall shear stress. Endothelial cell response to wall shear stress may be linked to the stability of coronary plaques. Unfortunately, in vitro studies of the endothelial cell involvement in plaque stability have been limited by unrealistic and simplified geometries, which cannot reproduce accurately the hemodynamics created by a coronary stenosis. Hence, in an attempt to better replicate the spatial wall shear stress gradient patterns in an atherosclerotic region, a three dimensional asymmetric stenosis model was created. Human abdominal aortic endothelial cells were exposed to steady flow (Re=50, 100, and 200 and τ=4.5 dyn/cm2, 9 dyn/cm2, and 18 dyn/cm2) in idealized 50% asymmetric stenosis and straight/tubular in vitro models. Local morphological changes that occur due to magnitude, duration, and spatial gradients were quantified to identify differences in cell response. In the one dimensional flow regions, where flow is fully developed and uniform wall shear stress is observed, cells aligned in flow direction and had a spindlelike shape when compared with static controls. Morphological changes were progressive and a function of time and magnitude in these regions. Cells were more randomly oriented and had a more cobblestone shape in regions of spatial wall shear stress gradients. These regions were present, both proximal and distal, at the stenosis and on the wall opposite to the stenosis. The response of endothelial cells to spatial wall shear stress gradients both in regions of acceleration and deceleration and without flow recirculation has not been previously reported. This study shows the dependence of endothelial cell morphology on spatial wall shear stress gradients and demonstrates that care must be taken to account for altered phenotype due to geometric features. These results may help explain plaque stability, as cells in shoulder regions near an atherosclerotic plaque had a cobblestone morphology indicating that they may be more permeable to subendothelial transport and express prothrombotic factors, which would increase the risk of atherothrombosis.

Author(s):  
Leonie Rouleau ◽  
Monica Farcas ◽  
Jean-Claude Tardif ◽  
Rosaire Mongrain ◽  
Richard Leask

Endothelial cell (EC) dysfunction has been linked to atherosclerosis through their response to hemodynamic forces. Flow in stenotic vessels creates complex spatial gradients in wall shear stress. In vitro studies examining the effect of shear stress on endothelial cells have used unrealistic and simplified models, which cannot reproduce physiological conditions. The objective of this study was to expose endothelial cells to the complex shear shear pattern created by an asymmetric stenosis. Endothelial cells were grown and exposed for different times to physiological steady flow in straight dynamic controls and in idealized asymmetric stenosis models. Cells subjected to 1D flow aligned with flow direction and had a spindle-like shape when compared to static controls. Endothelial cell morphology was noticeable different in the regions with a spatial gradient in wall shear stress, being more randomly oriented and of cobblestone shape. This occurred despite the presence of an increased magnitude in shear stress. No other study to date has described this morphology in the presence of a positive wall shear stress gradient or gradient of significant shear magnitude. This technique provides a more realistic model to study endothelial cell response to spatial and temporal shear stress gradients that are present in vivo and is an important advancement towards a better understanding of the mechanisms involved in coronary artery disease.


Author(s):  
Liang-Der Jou

Effects of wall shear stress on atherosclerotic disease are widely studied, but its effects on intracranial aneurysms are less clear. In vitro studies have demonstrated that endothelial cells (EC) go through morphological changes under abnormal wall shear stress, and these studies have also shown that abnormal wall shear stresses lead to a non-uniform EC distributions [1, 2]. Since endothelial cells play a critical role in mechanotransduction, a sub-optimal distribution of EC may affect remodeling of vessel wall.


2021 ◽  
Vol 22 (11) ◽  
pp. 5635
Author(s):  
Katharina Urschel ◽  
Miyuki Tauchi ◽  
Stephan Achenbach ◽  
Barbara Dietel

In the 1900s, researchers established animal models experimentally to induce atherosclerosis by feeding them with a cholesterol-rich diet. It is now accepted that high circulating cholesterol is one of the main causes of atherosclerosis; however, plaque localization cannot be explained solely by hyperlipidemia. A tremendous amount of studies has demonstrated that hemodynamic forces modify endothelial athero-susceptibility phenotypes. Endothelial cells possess mechanosensors on the apical surface to detect a blood stream-induced force on the vessel wall, known as “wall shear stress (WSS)”, and induce cellular and molecular responses. Investigations to elucidate the mechanisms of this process are on-going: on the one hand, hemodynamics in complex vessel systems have been described in detail, owing to the recent progress in imaging and computational techniques. On the other hand, investigations using unique in vitro chamber systems with various flow applications have enhanced the understanding of WSS-induced changes in endothelial cell function and the involvement of the glycocalyx, the apical surface layer of endothelial cells, in this process. In the clinical setting, attempts have been made to measure WSS and/or glycocalyx degradation non-invasively, for the purpose of their diagnostic utilization. An increasing body of evidence shows that WSS, as well as serum glycocalyx components, can serve as a predicting factor for atherosclerosis development and, most importantly, for the rupture of plaques in patients with high risk of coronary heart disease.


Author(s):  
Leonie Rouleau ◽  
Joanna Rossi ◽  
Jean-Claude Tardif ◽  
Rosaire Mongrain ◽  
Richard L. Leask

Endothelial cells (ECs) are believed to respond differentially to hemodynamic forces in the vascular tree. Once atherosclerotic plaque has formed in a vessel, the obstruction creates complex spatial gradients in wall shear stress (WSS). In vitro models have used mostly unrealistic and simplified geometries, which cannot reproduce accurately physiological conditions. The objective of this study was to expose ECs to the complex WSS pattern created by an asymmetric stenosis. Endothelial cells were grown and exposed for different times to physiological steady flows in straight dynamic controls and in idealized asymmetric stenosis models. Cell morphology was noticeably different in the regions with spatial WSS gradients, being more randomly oriented and of cobblestone shape. Inflammatory molecule expression was also altered by exposure to shear and endothelial nitric oxide synthase (eNOS) was upregulated by its presence. A regional response in terms of inflammation was observed through confocal microscopy. This work provides a more realistic model to study endothelial cell response to spatial and temporal WSS gradients that are present in vivo and is an important advancement towards a better understanding of the mechanisms involved in coronary artery disease.


2019 ◽  
Vol 30 (7) ◽  
pp. 923-931
Author(s):  
Vinay N. Surya ◽  
Eleftheria Michalaki ◽  
Gerald G. Fuller ◽  
Alexander R. Dunn

Cytosolic calcium (Ca2+) is a ubiquitous second messenger that influences numerous aspects of cellular function. In many cell types, cytosolic Ca2+ concentrations are characterized by periodic pulses, whose dynamics can influence downstream signal transduction. Here, we examine the general question of how cells use Ca2+ pulses to encode input stimuli in the context of the response of lymphatic endothelial cells (LECs) to fluid flow. Previous work shows that fluid flow regulates Ca2+ dynamics in LECs and that Ca2+-dependent signaling plays a key role in regulating lymphatic valve formation during embryonic development. However, how fluid flow might influence the Ca2+ pulse dynamics of individual LECs has remained, to our knowledge, little explored. We used live-cell imaging to characterize Ca2+ pulse dynamics in LECs exposed to fluid flow in an in vitro flow device that generates spatial gradients in wall shear stress (WSS), such as are found at sites of valve formation. We found that the frequency of Ca2+ pulses was sensitive to the magnitude of WSS, while the duration of individual Ca2+ pulses increased in the presence of spatial gradients in WSS. These observations provide an example of how cells can separately modulate Ca2+ pulse frequency and duration to encode distinct forms of information, a phenomenon that could extend to other cell types.


The Analyst ◽  
2021 ◽  
Author(s):  
Jingtong Na ◽  
Siyu Hu ◽  
Chundong Xue ◽  
Yanxia Wang ◽  
Kejie Chen ◽  
...  

To reproduce hemodynamic stress microenvironments of endothelial cells in vitro is of vital significance, by which one could exploit quantitative impact of hemodynamic stresses on endothelial function and seek innovative...


2010 ◽  
Vol 38 (9) ◽  
pp. 2791-2804 ◽  
Author(s):  
Leonie Rouleau ◽  
Ian B. Copland ◽  
Jean-Claude Tardif ◽  
Rosaire Mongrain ◽  
Richard L. Leask

Sign in / Sign up

Export Citation Format

Share Document