Reactionless Two-Degree-of-Freedom Planar Parallel Mechanism With Variable Payload

2010 ◽  
Vol 2 (4) ◽  
Author(s):  
Alexandre Lecours ◽  
Clément Gosselin

A reactionless mechanism is one that does not exert any reaction force or moment on its base at all times, for any arbitrary trajectory of the mechanism. This paper addresses the static and dynamic balancing of a two-degree-of-freedom parallel planar mechanism (five-bar mechanism). A simple and effective adaptive balancing method is presented that allows the mechanism to maintain the reactionless condition for a range of payloads. Important proofs concerning the balancing of five-bar mechanisms are also presented. The design of a real mechanism where parallelogram linkages are used to produce pure translations at the end-effector is also presented. Finally, using dynamic simulation software, it is shown that the mechanism is reactionless for arbitrarily chosen trajectories and for a variety of payloads.

Author(s):  
Alexandre Lecours ◽  
Cle´ment Gosselin

A reactionless mechanism is one which does not exert any reaction force or moment on its base at all times, for any arbitrary trajectory of the mechanism. This paper addresses the static and dynamic balancing of a two-degree-of-freedom parallel planar mechanism (five-bar mechanism). A simple and effective adaptive balancing method is presented that allows the mechanism to maintain the reactionless condition for a range of payloads. Important proofs concerning the balancing of five-bar mechanisms are also presented. The design of a real mechanism where parallelogram linkages are used to produce pure translations at the end-effector is also presented. Finally, using dynamic simulation software, it is shown that the mechanism is reactionless for arbitrarily chosen trajectories and for a variety of payloads.


2013 ◽  
Vol 6 (1) ◽  
Author(s):  
Hanwei Liu ◽  
Clément Gosselin ◽  
Thierry Laliberté

A novel two-degree-of-freedom (DOF) cable-loop slider-driven parallel mechanism is introduced in this paper. The novelty of the mechanism lies in the fact that no passive rigid-link mechanism or springs are needed to support the end-effector (only cables are connected to the end-effector) while at the same time there is no actuation redundancy in the mechanism. Sliders located on the edges of the workspace are used and actuation redundancy is eliminated while providing force closure everywhere in the workspace. It is shown that the two degrees of freedom of the mechanism are decoupled and only two actuators are needed to control the motion. There are two cable loops for each direction of motion: one acts as the actuating loop while the other is the constraint loop. Due to the simple geometric design, the kinematic and static equations of the mechanism are very compact. The stiffness of the mechanism is also analyzed in the paper. It can be observed that the mechanism's stiffness is much higher than the stiffness of the cables. The proposed mechanism's workspace is essentially equal to its footprint and there are no singularities.


Author(s):  
Hanwei Liu ◽  
Clément Gosselin ◽  
Thierry Laliberté

A novel two-degree-of-freedom cable-loop slider-driven parallel mechanism is introduced in this paper. The two degrees of freedom of the mechanism are decoupled and only two actuators are needed to control the motion. There are two cable loops for each direction of motion: one acts as the actuating loop while the other is the constraint loop. Due to the simple geometric design, the kinematic and static equations of the mechanism are very compact. The stiffness of the mechanism is also analyzed in the paper. It can be observed that the mechanism’s stiffness is much higher than the stiffness of the cables. Finally, the dynamic equations of the mechanism, including the compliance and the damping of the cables are obtained. The proposed mechanism’s workspace is essentially equal to its footprint and there are no singularities. The mechanism does not require the use of a rigid-link passive bridge and trolley (only cables are connected to the end-effector). Sliders located on the edges of the workspace are used and actuation redundancy is eliminated while providing force closure everywhere in the workspace.


Author(s):  
Alessandro Cammarata ◽  
Rosario Sinatra

This paper presents kinematic and dynamic analyses of a two-degree-of-freedom pointing parallel mechanism. The mechanism consists of a moving platform, connected to a fixed platform by two legs of type PUS (prismatic-universal-spherical). At first a simplified kinematic model of the pointing mechanism is introduced. Based on this proposed model, the dynamics equations of the system using the Natural Orthogonal Complement method are developed. Numerical examples of the inverse dynamics results are presented by numerical simulation.


Author(s):  
Meiying Zhang ◽  
Thierry Laliberté ◽  
Clément Gosselin

This paper proposes the use of passive force and torque limiting devices to bound the maximum forces that can be applied at the end-effector or along the links of a robot, thereby ensuring the safety of human-robot interaction. Planar isotropic force limiting modules are proposed and used to analyze the force capabilities of a two-degree-of-freedom planar serial robot. The force capabilities at the end-effector are first analyzed. It is shown that, using isotropic force limiting modules, the performance to safety index remains excellent for all configurations of the robot. The maximum contact forces along the links of the robot are then analyzed. Force and torque limiters are distributed along the structure of the robot in order to ensure that the forces applied at any point of contact along the links are bounded. A power analysis is then presented in order to support the results. Finally, examples of mechanical designs of force/torque limiters are shown to illustrate a possible practical implementation of the concept.


Author(s):  
Gim Song Soh ◽  
J. Michael McCarthy

In this paper, we use seven-position synthesis to add four TS constraints to a TRS serial chain robot and obtain a two degree-of-freedom spatial eight-bar linkage. The TRS chain is an elbow manipulator, similar to a PUMA robot. We synthesize a TS dyad to connect the base of the robot to its forearm, and then we synthesize three TS dyads that connect the upper arm of the robot to its end-effector. The result is a two degree-of-freedom spatial eight-bar linkage that moves through seven prescribed positions. It consists of a TRST loop supporting a 3TS-RS platform, which we denote as a TS-TRS-3TS spatial linkage. We formulate and solve the design equations for the TS dyads, and analyze the resulting eight-bar linkage. An example demonstrates our results.


Robotica ◽  
2014 ◽  
Vol 34 (4) ◽  
pp. 957-972 ◽  
Author(s):  
Yi Lu ◽  
Xuepeng Li ◽  
Canguo Zhang ◽  
Yang Liu

SUMMARYA novel 6-degree-of-freedom (DoF) parallel manipulator with three planar mechanism limbs is proposed and its kinematics and statics are analyzed systematically. First, the characteristics of the proposed manipulator are analyzed and the degree of freedom is calculated. Second, the formulae for solving the displacement, the velocity, and the acceleration are derived. Third, an analytic example is given for solving the kinematics and statics of this manipulator, and the analytic solved results are analyzed and verified by the simulation mechanism. Finally, a workspace is constructed and analyzed based on a comparison between the proposed manipulator and another 6-DoF parallel manipulator.


2004 ◽  
Vol 126 (6) ◽  
pp. 992-999 ◽  
Author(s):  
Simon Foucault ◽  
Cle´ment M. Gosselin

This paper addresses the dynamic balancing of a planar three-degree-of-freedom parallel mechanism. A mechanism is said to be dynamically balanced if, for any motion of the mechanism, the reaction forces and torques at the base are identically equal to zero, at all times. The proposed mechanism is based on legs consisting of five-bar parallelogram linkages. The balancing equations are first obtained. Then, optimization is used in order to minimize the mass and inertia of the moving links. Finally, a numerical verification of the dynamic balancing is provided and the prototype is presented.


2016 ◽  
Vol 8 (5) ◽  
Author(s):  
Meiying Zhang ◽  
Thierry Laliberté ◽  
Clément Gosselin

This paper proposes the use of passive force and torque limiting devices to bound the maximum forces that can be applied at the end-effector or along the links of a robot, thereby ensuring the safety of human–robot interaction. Planar isotropic force limiting modules are proposed and used to analyze the force capabilities of a two-degree-of-freedom (2DOF) planar serial robot. The force capabilities at the end-effector are first analyzed. It is shown that, using isotropic force limiting modules, the performance to safety index remains excellent for all configurations of the robot. The maximum contact forces along the links of the robot are then analyzed. Force and torque limiters are distributed along the structure of the robot in order to ensure that the forces applied at any point of contact along the links are bounded. A power analysis is then presented in order to support the results. Finally, examples of mechanical designs of force/torque limiters are shown to illustrate a possible practical implementation of the concept.


Sign in / Sign up

Export Citation Format

Share Document