A Multifeature Approach to Tool Wear Estimation Using 3D Workpiece Surface Texture Parameters

Author(s):  
Yi Liao ◽  
David A. Stephenson ◽  
Jun Ni

This work presents a new way to determine the condition of a cutting tool based on 3D texture parameters of workpiece surface. Recently, a laser holographic interferometer has been developed to rapidly measure a large workpiece surface and generate a 3D surface height map with micron level accuracy. This technique enables online surface measurement for machined workpieces. By measuring and analyzing workpiece surface texture, the interaction between the tool’s cutting edges and the workpiece surface can be extracted as a spatial signature. It can then be used as a warning sign for tool change because the workpiece produced by a heavily worn tool exhibits more irregularities in its surface texture than that produced by a normal tool. Multiple texture parameters such as image intensity histogram distribution parameter, 3D peak-to-valley height, and 3D surface waviness parameter are employed to indicate the onset of severe tool wear. In this work, aluminum (Al308) and compacted graphite iron parts were machined by a polycrystalline diamond insert and a multiphase coated tungsten carbide insert, respectively. After that, multiple 3D surface texture features of workpieces samples under different phases of tool wear were analyzed in order to assess tool wear conditions. The experimental results verify that these surface texture features can be used as good indicators for online tool wear monitoring.

Author(s):  
Yi Liao ◽  
David A. Stephenson ◽  
Jun Ni

This research presents a new way to determine the condition of a cutting tool based on high definition surface texture parameters. Recently, a laser holographic interferometer has been developed to rapidly measure the whole workpiece surface (e.g. 300mm×300mm) and generate a 3D surface height map with micron level accuracy. This technique enables on-line surface measurement for machined parts. By measuring the surface texture of workpieces, the interaction between the tool’s cutting edges and the surface can be extracted as a spatial signature. It can then be used as a warning sign for tool change because the workpiece produced by a heavily worn tool exhibits more irregularities than those produced by a normal tool. Three surface texture parameters: image intensity histogram, surface peak-to-valley height and surface waviness are employed to detect the onset of severe tool wear. Furthermore, surface waviness can also be used to classify the different phases of tool wear. In this work, nine surface samples under different tool wear phases are created and analyzed using surface texture parameters combined with Statistical Process Control (SPC) charts to assess tool conditions. The results verify that these surface texture parameters can be used for on-line tool wear monitoring.


2020 ◽  
Vol 12 (10) ◽  
Author(s):  
Naomi L. Martisius ◽  
Shannon P. McPherron ◽  
Ellen Schulz-Kornas ◽  
Marie Soressi ◽  
Teresa E. Steele

Abstract Increasingly researchers have employed confocal microscopy and 3D surface texture analysis to assess bone surface modifications in an effort to understand ancient behavior. However, quantitative comparisons between the surfaces of purported archaeological bone tools and experimentally manufactured and used bones are complicated by taphonomic processes affecting ancient bone. Nonetheless, it may be reasonable to assume that bones within the same deposits are altered similarly and thus these alterations are quantifiable. Here we show how unworked bones can be used to quantify the taphonomic effect on bone surfaces and how this effect can then be controlled for and incorporated into an analysis for evaluating the modified surfaces of purported bone tools. To assess the baseline taphonomy of Middle Paleolithic archaeological deposits associated with typologically identified bone artifacts, specifically lissoirs, we directly compare the surface textures of ancient and modern unworked ribs. We then compare the ancient unworked ribs and lissoirs to assess their differences and predict the ancient artifacts’ original surface state using a multilevel multivariate Bayesian model. Our findings demonstrate that three of five tested surface texture parameters (Sa, Spc, and IsT) are useful for distinguishing surface type. Our model predictions show that lissoirs tend to be less rough, have more rounded surface peaks, and exhibit more directionally oriented surfaces. These characteristics are likely due to anthropogenic modifications and would have been more pronounced at deposition. Quantifying taphonomic alterations moves us one step closer to accurately assessing how bone artifacts were made and used in the ancient past.


Scanning ◽  
2015 ◽  
Vol 37 (5) ◽  
pp. 335-349 ◽  
Author(s):  
Iuliana Stoica ◽  
Elena Gabriela Hitruc ◽  
Daniel Timpu ◽  
Virgil Barboiu ◽  
Dan Sorin Vasilescu

2015 ◽  
Vol 772 ◽  
pp. 3-7 ◽  
Author(s):  
Guna Civcisa ◽  
Tõnu Leemet

This paper presents a study of 3D surface texture measurements and analysis of several surface texture parameters. A stylus measuring instrument was used to measure 3D surface topographies. In experimental part of this study, two coated gas turbine blades used in aerospace industry were chosen to examine surface of the coatings in nano-scale. Surface texture parameters of Ti-Al coating and Ti-Al-N coating were measured and compared to each other. The aim of the research is to analyze the surface of these coatings in an areal (3D) manner. The results indicate slight differences between these two surface textures despite the fact that both are Titanium-based coatings, and the surface of base material for both samples was prepared in the same way before deposition. Further study with repeated measurements of surface texture for deposed coatings has to be made after erosion tests.


2019 ◽  
Vol 799 ◽  
pp. 71-76
Author(s):  
Oskars Linins ◽  
Ernests Jansons ◽  
Armands Leitans ◽  
Irina Boiko ◽  
Janis Lungevics

The paper is aimed to the methodology for estimation of service life of mechanical engineering components in the case of elastic-plastic contact of surfaces. Well-known calculation methods depending on physics, theory of probability, the analysis of friction pair’ shape and fit include a number of parameters that are difficult or even impossible to be technologically controlled in the manufacturing of mechanical engineering components. The new approach for wear rate estimation using surface texture parameters as well as physical-mechanical properties and geometric parameters of components is proposed. The theoretical part of the calculations is based on the 3D surface texture principles, the basics of material fatigue theory, the theory of elasticity and the contact mechanics of surfaces. It is possible to calculate the service time of the machine, but the process of running-in of the components is relatively short (less than 5%), therefore, the service time is mainly determined by a normal operating period, which also was used to evaluate this period. The calculated input parameters are technologically and metrologically available and new method for calculating the service time can be used in the design process of the equipment. The results of approbation of the method for estimation service time of mechanical engineering, which prove the applicability of mentioned method, are offered as well.


Sign in / Sign up

Export Citation Format

Share Document