Numerical Simulation of Droplet Size Distribution in Vertical Upward Annular Flow

2010 ◽  
Vol 132 (12) ◽  
Author(s):  
Y. Liu ◽  
W. Z. Li

The liquid droplet size distribution in gas-liquid vertical upward annular flow is investigated through a CFD (computational fluid dynamics)-PBM (population balance model) coupled model in this paper. Two-fluid Eulerian scheme is employed as the framework of this model and a population balance equation is used to obtain the dispersed liquid droplet diameter distribution, where three different coalescence and breakup kernels are investigated. The Sauter mean diameter d32 is used as a bridge between a two-fluid model and a PBM. The simulation results suggest that the original Luo–Luo kernel and the mixed kernel A (Luo’s coalescence kernel incorporated with Prince and Blanch’s breakup kernel) can only give reasonable predictions for large diameter droplets. Mixed kernel B (Saffman and Turner’s coalescence kernel incorporated with Lehr’s breakup kernel) can accurately capture the particle size distribution (PSD) of liquid droplets covering all droplet sizes, and is appropriate for the description of liquid droplet size distribution in gas-liquid annular flow.

2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Ri Zhang ◽  
Haixiao Liu ◽  
Sheng Dong ◽  
Mingyang Liu

The movement and distribution of each phase in annular flow can be considered as random events at a microscopic level. Hence, a probability analysis is appropriate to estimate the morphological features and mechanical characteristics of annular flow from a macroscopic scale. In the present work, three characteristic parameters including the film thickness, interfacial shear stress, and characteristic droplet size are predicted by a probability model as the statistical results of abundant samples. The film thickness can be directly calculated as one of the solutions to the basic equations of annular flow. The interfacial shear stress is estimated as a combination of the frictional and dragging components. The droplet size distribution is obtained using a method of undetermined coefficients. These characteristic parameters are well verified by comparing with the experimental data available in the literature. It is demonstrated that the probability model can accurately calculate the film thickness and maximum droplet size, but the predictions of the interfacial shear stress and mean droplet size are relatively coarse. Furthermore, the effects on the film thickness and Sauter mean diameter of other parameters are discussed in detail. Finally, some important phenomena observed in experiments are interpreted by the probability model.


2018 ◽  
Vol 180 ◽  
pp. 02053
Author(s):  
Bohus Kysela ◽  
Jiri Konfrst ◽  
Zdenek Chara ◽  
Radek Sulc ◽  
Darina Jasikova

Dispersion of two immiscible liquids is commonly used in chemical industry as wall as in metallurgical industry e. g. extraction process. The governing property is droplet size distribution. The droplet sizes are given by the physical properties of both liquids and flow properties inside a stirred tank. The first investigation stage is focused on in-situ droplet size measurement using image analysis and optimizing of the evaluation method to achieve maximal result reproducibility. The obtained experimental results are compared with multiphase flow simulation based on Euler-Euler approach combined with PBM (Population Balance Modelling). The population balance model was, in that specific case, simplified with assumption of pure breakage of droplets.


Energy ◽  
2016 ◽  
Vol 106 ◽  
pp. 112-120 ◽  
Author(s):  
Włodzimierz Wróblewski ◽  
Sławomir Dykas

2006 ◽  
Vol 16 (6) ◽  
pp. 673-686 ◽  
Author(s):  
Laszlo E. Kollar ◽  
Masoud Farzaneh ◽  
Anatolij R. Karev

Sign in / Sign up

Export Citation Format

Share Document