CFD with population balance model to predict droplet size distribution in submerged turbulent multiphase jets

2016 ◽  
Vol 94 (11) ◽  
pp. 2072-2085
Author(s):  
Abhijit Rao ◽  
Mayur Sathe ◽  
Rupesh K. Reddy ◽  
Krishnaswamy Nandakumar
2010 ◽  
Vol 132 (12) ◽  
Author(s):  
Y. Liu ◽  
W. Z. Li

The liquid droplet size distribution in gas-liquid vertical upward annular flow is investigated through a CFD (computational fluid dynamics)-PBM (population balance model) coupled model in this paper. Two-fluid Eulerian scheme is employed as the framework of this model and a population balance equation is used to obtain the dispersed liquid droplet diameter distribution, where three different coalescence and breakup kernels are investigated. The Sauter mean diameter d32 is used as a bridge between a two-fluid model and a PBM. The simulation results suggest that the original Luo–Luo kernel and the mixed kernel A (Luo’s coalescence kernel incorporated with Prince and Blanch’s breakup kernel) can only give reasonable predictions for large diameter droplets. Mixed kernel B (Saffman and Turner’s coalescence kernel incorporated with Lehr’s breakup kernel) can accurately capture the particle size distribution (PSD) of liquid droplets covering all droplet sizes, and is appropriate for the description of liquid droplet size distribution in gas-liquid annular flow.


2017 ◽  
Vol 2 (4) ◽  
pp. 567-576 ◽  
Author(s):  
Stefano Lazzari ◽  
Milad Abolhasani ◽  
Klavs F. Jensen

A population balance model describes the formation of II–VI semiconductor nanocrystals and predicts experimentally observed properties of the nanocrystal size distribution.


2018 ◽  
Vol 41 (8) ◽  
pp. 2894-2905 ◽  
Author(s):  
Luis M. Abia ◽  
Óscar Angulo ◽  
Juan Carlos López-Marcos ◽  
Miguel Ángel López-Marcos

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Zhenliang Li ◽  
Peili Lu ◽  
Daijun Zhang ◽  
Fuzhong Song

The floc size distribution of activated sludge was simulated successfully by population balance model in the previous study (Population Balance Model and Calibration Method for Simulating the Time Evolution of Floc Size Distribution of Activated Sludge Flocculation. Desalination and Water Treatment, 67, 41-50). However, nonignorable errors exist in the simulation for the volume percentage of large flocs. This paper describes the application of a modified population balance model in the simulation of the time evolution of floc size distribution in activated sludge flocculation process under shear-induced conditions. It was found that the application of modified size dependent collision efficiency, modified breakage rate expression by assuming a maximum value, and binominal daughter-particles distribution function could improve the population balance model for activated sludge flocculation and successfully predict the dynamic changes in volume percentage distribution and mean floc size of activated sludge under different shear conditions. The results demonstrate that the maximum breakage rate was independent on the velocity gradient, and both the collision efficiency and breakage rate coefficient show a power-law relationship with the average velocity gradient; the former decreases while the latter increases with the rise of the average velocity gradient. These findings would help to understand the dynamics of activated sludge flocculation.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 470
Author(s):  
Ngonidzashe Chimwani ◽  
Murray M. Bwalya

A number of experiments were conducted on a laboratory batch impact crusher to investigate the effects of particle size and impeller speed on grinding rate and product size distribution. The experiments involved feeding a fixed mass of particles through a funnel into the crusher up to four times, and monitoring the grinding achieved with each pass. The duration of each pass was approximately 20 s; thus, this amounted to a total time of 1 min and 20 s of grinding for four passes. The population balance model (PBM) was then used to describe the breakage process, and its effectiveness as a tool for describing the breakage process in the vertical impact crusher is assessed. It was observed that low impeller speeds require longer crushing time to break the particles significantly whilst for higher speeds, longer crushing time is not desirable as grinding rate sharply decreases as the crushing time increases, hence the process becomes inefficient. Results also showed that larger particle sizes require shorter breakage time whilst smaller feed particles require longer breakage time.


Sign in / Sign up

Export Citation Format

Share Document