Boundaries Effects on the Movements of a Sphere Immersed in a Free Surface Flow

Author(s):  
D. Mirauda ◽  
A. Volpe Plantamura ◽  
S. Malavasi

This work analyzes the influence of boundary conditions on the movements of a sphere immersed in a steady free surface flow. The sphere is free to move both in the transverse and streamwise directions and it is characterized by the values of the mass ratio m∗ equal to 1.34 and of the damping ratio ζ equal to 0.004. In all the experiments the blockage coefficient is kept constant, while the sphere is located at different distances from the free surface and from the bottom wall of the channel. The movements of the sphere have been measured by means of the image analysis of a charge coupled device camera which provides the 2D (streamwise and transverse) displacements of the sphere with a temporal resolution of 0.02 s. The experimental data show a significant influence of the boundaries on the sphere movement and highlight a different behavior of the amplitude response between the three different experimental setups considered.

Author(s):  
D. Mirauda ◽  
A. Volpe Plantamura ◽  
S. Malavasi

This work analyzes the dynamic response of a sphere located close to the floor of a hydraulic channel within steady free-surface current flows. The sphere is free to move in transverse (y) and streamwise (x) directions, and it is characterized by a mass ratio m* equal to 1.34. The oscillation amplitudes and the frequencies of the sphere have been measured by means of the image analysis of a charge coupled device (CCD) camera. The experimental data show a significant influence of the free surface on the sphere movement and highlight a different behavior of the dynamic response to the increasing of the water level on the upper part of the body.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ondřej Bublík ◽  
Libor Lobovský ◽  
Václav Heidler ◽  
Tomáš Mandys ◽  
Jan Vimmr

PurposeThe paper targets on providing new experimental data for validation of the well-established mathematical models within the framework of the lattice Boltzmann method (LBM), which are applied to problems of casting processes in complex mould cavities.Design/methodology/approachAn experimental campaign aiming at the free-surface flow within a system of narrow channels is designed and executed under well-controlled laboratory conditions. An in-house lattice Boltzmann solver is implemented. Its algorithm is described in detail and its performance is tested thoroughly using both the newly recorded experimental data and well-known analytical benchmark tests.FindingsThe benchmark tests prove the ability of the implemented algorithm to provide a reliable solution when the surface tension effects become dominant. The convergence of the implemented method is assessed. The two new experimentally studied problems are resolved well by simulations using a coarse computational grid.Originality/valueA detailed set of original experimental data for validation of computational schemes for simulations of free-surface gravity-driven flow within a system of narrow channels is presented.


2016 ◽  
Vol 808 ◽  
pp. 441-468 ◽  
Author(s):  
S. L. Gavrilyuk ◽  
V. Yu. Liapidevskii ◽  
A. A. Chesnokov

A two-layer long-wave approximation of the homogeneous Euler equations for a free-surface flow evolving over mild slopes is derived. The upper layer is turbulent and is described by depth-averaged equations for the layer thickness, average fluid velocity and fluid turbulent energy. The lower layer is almost potential and can be described by Serre–Su–Gardner–Green–Naghdi equations (a second-order shallow water approximation with respect to the parameter $H/L$, where $H$ is a characteristic water depth and $L$ is a characteristic wavelength). A simple model for vertical turbulent mixing is proposed governing the interaction between these layers. Stationary supercritical solutions to this model are first constructed, containing, in particular, a local turbulent subcritical zone at the forward slope of the wave. The non-stationary model was then numerically solved and compared with experimental data for the following two problems. The first one is the study of surface waves resulting from the interaction of a uniform free-surface flow with an immobile wall (the water hammer problem with a free surface). These waves are sometimes called ‘Favre waves’ in homage to Henry Favre and his contribution to the study of this phenomenon. When the Froude number is between 1 and approximately 1.3, an undular bore appears. The characteristics of the leading wave in an undular bore are in good agreement with experimental data by Favre (Ondes de Translation dans les Canaux Découverts, 1935, Dunod) and Treske (J. Hydraul Res., vol. 32 (3), 1994, pp. 355–370). When the Froude number is between 1.3 and 1.4, the transition from an undular bore to a breaking (monotone) bore occurs. The shoaling and breaking of a solitary wave propagating in a long channel (300 m) of mild slope (1/60) was then studied. Good agreement with experimental data by Hsiao et al. (Coast. Engng, vol. 55, 2008, pp. 975–988) for the wave profile evolution was found.


Author(s):  
Sujit K Bose ◽  
Subhasish Dey

A new theory is developed for the steady free surface flow over a horizontal rough bed with uniform upward seepage normal to the bed. The theory is based on the Reynolds averaged Navier–Stokes (RANS) equations applied to the flow domain that is divided into a fully turbulent outer layer and an inner layer (viscous sublayer plus buffer layer), which is a transition zone from viscous to turbulent regime. In the outer layer, the Reynolds stress far exceeds viscous shear stress, varying gradually with vertical distance. Near the free surface, the velocity gradient in vertical direction becomes lesser giving rise to wake flow. On the other hand, in the composite inner layer close to the bed, the viscous shear stress exists together with the turbulent stress. Thus, for the outer layer, a logarithmic law having modified coefficients from the traditional logarithmic law is obtained for the streamwise velocity, whereas for the inner layer, a fifth-degree polynomial including effective height of protrusions holds. The exact velocity expressions for inner and outer layer, which contain principal terms in addition to infinitesimally small terms, are in agreement with the experimental data obtained from laboratory measurements through an acoustic Doppler velocimeter. The experiments were run on two conditions of no seepage and a low upward seepage. Expressions for the Reynolds stress are also derived and computed for validation by the experimental data.


1975 ◽  
Vol 3 (1) ◽  
pp. 51-68 ◽  
Author(s):  
Thomas G. Smith ◽  
J.O. Wilkes

Author(s):  
Arthur E. P. Veldman ◽  
Henk Seubers ◽  
Peter van der Plas ◽  
Joop Helder

The simulation of free-surface flow around moored or floating objects faces a series of challenges, concerning the flow modelling and the numerical solution method. One of the challenges is the simulation of objects whose dynamics is determined by a two-way interaction with the incoming waves. The ‘traditional’ way of numerically coupling the flow dynamics with the dynamics of a floating object becomes unstable (or requires severe underrelaxation) when the added mass is larger than the mass of the object. To deal with this two-way interaction, a more simultaneous type of numerical coupling is being developed. The paper will focus on this issue. To demonstrate the quasi-simultaneous method, a number of simulation results for engineering applications from the offshore industry will be presented, such as the motion of a moored TLP platform in extreme waves, and a free-fall life boat dropping into wavy water.


2005 ◽  
Vol 63 (5-7) ◽  
pp. e1897-e1908 ◽  
Author(s):  
E. Miglio ◽  
S. Perotto ◽  
F. Saleri

Sign in / Sign up

Export Citation Format

Share Document