Spilling breakers in shallow water: applications to Favre waves and to the shoaling and breaking of solitary waves

2016 ◽  
Vol 808 ◽  
pp. 441-468 ◽  
Author(s):  
S. L. Gavrilyuk ◽  
V. Yu. Liapidevskii ◽  
A. A. Chesnokov

A two-layer long-wave approximation of the homogeneous Euler equations for a free-surface flow evolving over mild slopes is derived. The upper layer is turbulent and is described by depth-averaged equations for the layer thickness, average fluid velocity and fluid turbulent energy. The lower layer is almost potential and can be described by Serre–Su–Gardner–Green–Naghdi equations (a second-order shallow water approximation with respect to the parameter $H/L$, where $H$ is a characteristic water depth and $L$ is a characteristic wavelength). A simple model for vertical turbulent mixing is proposed governing the interaction between these layers. Stationary supercritical solutions to this model are first constructed, containing, in particular, a local turbulent subcritical zone at the forward slope of the wave. The non-stationary model was then numerically solved and compared with experimental data for the following two problems. The first one is the study of surface waves resulting from the interaction of a uniform free-surface flow with an immobile wall (the water hammer problem with a free surface). These waves are sometimes called ‘Favre waves’ in homage to Henry Favre and his contribution to the study of this phenomenon. When the Froude number is between 1 and approximately 1.3, an undular bore appears. The characteristics of the leading wave in an undular bore are in good agreement with experimental data by Favre (Ondes de Translation dans les Canaux Découverts, 1935, Dunod) and Treske (J. Hydraul Res., vol. 32 (3), 1994, pp. 355–370). When the Froude number is between 1.3 and 1.4, the transition from an undular bore to a breaking (monotone) bore occurs. The shoaling and breaking of a solitary wave propagating in a long channel (300 m) of mild slope (1/60) was then studied. Good agreement with experimental data by Hsiao et al. (Coast. Engng, vol. 55, 2008, pp. 975–988) for the wave profile evolution was found.

Author(s):  
K. J. Bai ◽  
J. H. Kyoung ◽  
J. W. Kim

This paper describes a finite element method applied to a nonlinear free surface flow problem for a ship moving in three dimensions. The physical model is taken to simulate the towing tank experimental conditions. The exact nonlinear free-surface flow problem formulated by an initial/boundary value problem is replaced by an equivalent weak formulation. The same problem was considered earlier by Bai, et. al. [1] where some irregularities were observed in the downstream waves and a transom stern ship geometry could not be treated. In the present paper, specifically, three improvements are made from the earlier work. The first improvement is the introduction of the 5-point Chebyshev filtering scheme which eliminates the irregular and saw-toothed waves in the downstream. The second improvement is that now we can treat a transom stern ship geometry. The third improvement is the introduction of a new boundary condition to simulate a dry bottom behind a transom stern ship which is stretched from the free surface to the bottom at a high Froude number. Computations are made for two models. The first model is tested for the generation of the solitons in the upstream and smooth waves in the downstream. The second model is used to compute the generation of a dry bottom behind a transom stern which is one of highly nonlinear phenomena. The results of the first model show a good agreement with previous results for the generation of the solitons. The results of the second model also show a good agreement with the preliminary experimental observation for a dry-bottom, which will be reported in near future. The numerical simulation of the second model can be applied to the local flow behind a sail of a submarine in cruise, a sloshing problem in LNG tankers, and a dam breaking problem. Both computed models are assumed to be in shallow water for simplicity. However, the present numerical method can treat arbitrary water-depth and practical ship geometries.


2007 ◽  
Vol 24 (12) ◽  
pp. 1699-1722
Author(s):  
Meng-Chi Hung ◽  
Te-Yung Hsieh ◽  
Tung-Lin Tsai ◽  
Jinn-Chuang Yang

Author(s):  
I. L. Collings

AbstractSolutions are found to two cusp-like free-surface flow problems involving the steady motion of an ideal fluid under the infinite-Froude-number approximation. The flow in each case is due to a submerged line source or sink, in the presence of a solid horizontal base.


2016 ◽  
Vol 809 ◽  
pp. 918-940 ◽  
Author(s):  
Roger H. J. Grimshaw ◽  
Montri Maleewong

We consider free-surface flow over two localised obstacles using the framework of the forced Korteweg–de Vries equation in a suite of numerical simulations. Our main concern is with the transcritical regime when the oncoming flow has a Froude number close to unity. The flow behaviour can be characterised by the Froude number and the maximum heights of the obstacles. In the transcritical regime at early times, undular bores are produced upstream and downstream of each obstacle. Our main aim is to describe the interaction of these undular bores between the obstacles, and to find the outcome at very large times. We find that the flow development can be defined in three stages. The first stage is described by the well-known development of undular bores upstream and downstream of each obstacle. The second stage is the interaction between the undular bore moving downstream from the first obstacle and the undular bore moving upstream from the second obstacle. The third stage is the very large time evolution of this interaction, when one of the obstacles controls criticality. For equal obstacle heights, our analytical and numerical results indicate that either one of the obstacles can control flow criticality, that being the first obstacle when the flow is slightly subcritical and the second obstacle otherwise. For unequal obstacle heights the larger obstacle controls criticality. The results obtained here complement a recent numerical study using the fully nonlinear, but non-dispersive, shallow water equations.


Author(s):  
D. Mirauda ◽  
A. Volpe Plantamura ◽  
S. Malavasi

This work analyzes the influence of boundary conditions on the movements of a sphere immersed in a steady free surface flow. The sphere is free to move both in the transverse and streamwise directions and it is characterized by the values of the mass ratio m∗ equal to 1.34 and of the damping ratio ζ equal to 0.004. In all the experiments the blockage coefficient is kept constant, while the sphere is located at different distances from the free surface and from the bottom wall of the channel. The movements of the sphere have been measured by means of the image analysis of a charge coupled device camera which provides the 2D (streamwise and transverse) displacements of the sphere with a temporal resolution of 0.02 s. The experimental data show a significant influence of the boundaries on the sphere movement and highlight a different behavior of the amplitude response between the three different experimental setups considered.


Author(s):  
J.-M. Vanden-Broeck

AbstractWe consider a free-surface flow due to a source submerged in a fluid of infinite depth. It is assumed that there is a stagnation point on the free surface just above the source. The free-surface condition is linearized around the rigid-lid solution, and the resulting equations are solved numerically by a series truncation method with a nonuniform distribution of collocation points. Solutions are presented for various values of the Froude number. It is shown that for sufficiently large values of the Froude number, there is a train of waves on the free surface. The wavelength of these waves decreases as the distance from the source increases.


2005 ◽  
Vol 127 (3) ◽  
pp. 572-582 ◽  
Author(s):  
Shin Hyung Rhee

The present study is concerned with liquid tank sloshing at low filling level conditions. The volume of fluid method implemented in a Navier–Stokes computational fluid dynamics code is employed to handle the free-surface flow of liquid sloshing. The geometric reconstruction scheme for the interface representation is employed to ensure sharpness at the free surface. The governing equations are discretized by second order accurate schemes on unstructured grids. Several different computational approaches are verified and numerical uncertainties are assessed. The computational results are validated against existing experimental data, showing good agreement. The capability is demonstrated for a generic membrane-type liquefied natural gas carrier tank with a simplified pump tower inside. The validation results suggest that the present computational approach is both easy to apply and accurate enough for more realistic problems.


2012 ◽  
Vol 23 (4) ◽  
pp. 441-467 ◽  
Author(s):  
CHRISTOPHER J. LUSTRI ◽  
SCOTT W. MCCUE ◽  
BENJAMIN J. BINDER

The problem of steady subcritical free surface flow past a submerged inclined step is considered. The asymptotic limit of small Froude number is treated, with particular emphasis on the effect that changing the angle of the step face has on the surface waves. As demonstrated by Chapman & Vanden-Broeck, (2006) Exponential asymptotics and gravity waves. J. Fluid Mech.567, 299–326, the divergence of a power series expansion in powers of the square of the Froude number is caused by singularities in the analytic continuation of the free surface; for an inclined step, these singularities may correspond to either the corners or stagnation points of the step, or both, depending on the angle of inclination. Stokes lines emanate from these singularities, and exponentially small waves are switched on at the point the Stokes lines intersect with the free surface. Our results suggest that for a certain range of step angles, two wavetrains are switched on, but the exponentially subdominant one is switched on first, leading to an intermediate wavetrain not previously noted. We extend these ideas to the problem of flow over a submerged bump or trench, again with inclined sides. This time there may be two, three or four active Stokes lines, depending on the inclination angles. We demonstrate how to construct a base topography such that wave contributions from separate Stokes lines are of equal magnitude but opposite phase, thus cancelling out. Our asymptotic results are complemented by numerical solutions to the fully nonlinear equations.


Author(s):  
J.S.C. Tong ◽  
I.G. Currie

Experiments were carried out on free-surface flow over obstacles of finite length. The obstacles were located on the otherwise horizontal surface which contained the free-surface flow. The Froude number in each case was subcritical and resulted in a train of lee waves on the surface, downstream of the obstacles. The results confirm the predicted phenomenon of ‘upstream influence’ – that the mean upstream depth and the mean downstream depth should differ. Serious discrepancies between the observed results and the results from existing theories are noted, however. Not only is the amplitude of the lee waves at variance with the theory, but the phasing of the wave train, relative to the obstacle, is different. An alternative theoretical approach is proposed, the results from which are in much better agreement with the observed results.


2019 ◽  
Vol 143 ◽  
pp. 1890-1901 ◽  
Author(s):  
Alla Eddine Benchikh Le Hocine ◽  
R.W. Jay Lacey ◽  
Sébastien Poncet

Sign in / Sign up

Export Citation Format

Share Document