Study on Performance and Flow Condition of a Cross-Flow Wind Turbine With a Symmetrical Casing

2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Junichiro Fukutomi ◽  
Toru Shigemitsu ◽  
Hiroki Daito

A cross-flow wind turbine has a high torque coefficient at a low tip speed ratio. Therefore, it is a good candidate for use as a self-starting turbine. Furthermore, it has low noise and excellent stability; therefore, it has attracted attention from the viewpoint of applications as a small wind turbine for an urban district. However, its maximum power coefficient is extremely low (10%) as compared to that of other small wind turbines. Prevailing winds in two directions often blow in urban and coastal regions. Therefore, in order to improve the performance and the flow condition of the cross-flow rotor, a casing suitable for this sort of prevailing wind conditions is designed in this research and the effect of the casing is investigated by experimental and numerical analysis. In the experiment, a wind tunnel with a square discharge is used and main flow velocity is set as 20 m/s. A torque meter, a rotational speed pickup, and a motor are assembled with the same axis as the test wind turbine and the tip speed ratio is changeable by a rotational speed controller. The casing is set around the cross-flow rotor and flow distribution at the rotor inlet and the outlet is measured by a one-hole pitot tube. The maximum power coefficient is obtained as Cpmax = 0.19 with the casing, however Cpmax = 0.098 without the casing. It is clear that the inlet and the outlet flow condition is improved by the casing. In the present paper, in order to improve the performance of a cross-flow wind turbine, a symmetrical casing suitable for prevailing winds in two directions is proposed. Then, the performance and the internal flow condition of the cross-flow wind turbine with the casing are clarified. Furthermore, the influence of the symmetrical casing on performance is discussed and the relation between the flow condition and performance is considered.

Author(s):  
Junichiro Fukutomi ◽  
Toru Shigemitsu ◽  
Hiroki Daito

Wind turbine has been attracted as the technology for clean and renewable energy and many kinds of the researches and the developments are performed. Cross-flow wind turbine has a characteristic of good self-starting, low noise and high stability. Therefore, it is expected as the small-sized wind turbine for urban district. But the maximum power coefficient of the cross-flow wind turbine is extremely low as 10%. Wind in an urban region and a coastal place has a prevailing wind of two directions to occur in a specific condition frequently. Then, a casing suitable for this prevailing wind was designed in this research and the effect of the casing was investigated by experimental and numerical analysis. In the experiment, a wind tunnel with a square discharge 500mm×500mm was used and main flow velocity was set as 20m/s to reduce the influence of measurement error on performance. A torque meter, a rotational speed pickup and a motor were assembled with the same axis at low position of a test wind turbine which was set vertically and rotational speed and tip speed ratio were changeable by a rotational speed controller. The casing was set around the cross-flow rotor and flow distribution at the rotor inlet and the outlet was measured by a one-hole pitot tube. The maximum power coefficient was obtained as Cpmax = 0.19 with the casing, however as Cpmax = 0.098 without the casing. And it was clarified that the inlet and the outlet flow condition was improved by the casing. In the present paper, in order to improve the performance of a cross-flow wind turbine, a symmetrical casing suitable for the prevailing wind of two directions is proposed. Then performance and internal flow condition of the cross-flow wind turbine with the casing is clarified. Furthermore, the influence of a symmetrical casing on performance is discussed and the relation between flow condition and performance is considered.


Author(s):  
Junichiro Fukutomi ◽  
Toru Shigemitsu ◽  
Masaaki Toyohara

A cross-flow wind turbine has a high torque coefficient at a low tip speed ratio. Therefore, it is a good candidate for use as a self-starting turbine. Furthermore, it has low noise and excellent stability; therefore, it has attracted attention from the viewpoint of applications as a small wind turbine for an urban district. However, its maximum power coefficient is extremely low (10%) as compared to that of other small wind turbines. In order to improve the performance and the flow condition of the cross-flow rotor, symmetrical casing with a nozzle and a diffuser are proposed and experimental research with the symmetrical casing is conducted. The maximum power coefficient is obtained as Cpmax = 0.17 for casing and Cpmax = 0.098 in the case without the casing. In the present study, power characteristics of the cross-flow rotor and those of the symmetrical casing with the nozzle and the diffuser are investigated. Then, the performance and internal flow patterns of the cross-flow wind turbine with the symmetrical casings are clarified. After that, the effect of the side boards set on the symmetrical casing is discussed on the basis of the analysis results.


2018 ◽  
Vol 13 (1) ◽  
pp. 28
Author(s):  
Muhammad Ivan Fadhil Hendrawan ◽  
Dominicus Danardono ◽  
Syamsul Hadi

AbstractThe simulation aimed to understand the effect of the angle of blade number and blade number of vertical axis wind turbine with cross flow runner to enhance the performance of wind turbine. The turbine had 20, 22, and 24 number of blades. Simulation was done in 2D analysis using ANSYS-Fluent. Tip speed ratio was varied in range of 0,1-0,5 with constant velocity inlet 2 m/s. The effect of blade numbers to torque and power coefficient were analyzed and compared. It had been found that the best power coefficient were 0,5 at tip speed ratio 0,3.


2020 ◽  
Vol 17 (2) ◽  
pp. 729-735 ◽  
Author(s):  
Mohanad Al-Ghriybah ◽  
Mohd Fadhli Zulkafli ◽  
Djamal Hissein Didane ◽  
Sofian Mohd

The performance of the single and double blade Savonius rotors are numerically analyzed using the K-ε/realizable turbulence model. The computations are implemented at different values of tipspeed ratio from 0.2 to 0.4 with a step of 0.05. Both rotors have the same dimensions with an external overlap between their blades equals 0.02 m. The results indicate that the double blade rotor performs better than the single blade rotor in terms of power coefficient. In addition, the torque coefficient is improved at all tested values of tip-speed ratio. Furthermore, the results of the simulation show that the maximum power coefficient was 0.163 at tip-speed ratio = 0.4 for the double blade rotor, whereas the maximum improvement of the double blade rotor occurs at tipspeed ratio = 0.2 with a percentage of 11.86% compared to the single blade rotor. Moreover, the highest value of the torque coefficient was 0.524 at tip-speed ratio = 0.2 for the double blade rotor.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
M. Niyat Zadeh ◽  
M. Pourfallah ◽  
S. Safari Sabet ◽  
M. Gholinia ◽  
S. Mouloodi ◽  
...  

AbstractIn this paper, we attempted to measure the effect of Bach’s section, which presents a high-power coefficient in the standard Savonius model, on the performance of the helical Savonius wind turbine, by observing the parameters affecting turbine performance. Assessment methods based on the tip speed ratio, torque variation, flow field characterizations, and the power coefficient are performed. The present issue was stimulated using the turbulence model SST (k- ω) at 6, 8, and 10 m/s wind flow velocities via COMSOL software. Numerical simulation was validated employing previous articles. Outputs demonstrate that Bach-primary and Bach-developed wind turbine models have less flow separation at the spoke-end than the simple helical Savonius model, ultimately improving wind turbines’ total performance and reducing spoke-dynamic loads. Compared with the basic model, the Bach-developed model shows an 18.3% performance improvement in the maximum power coefficient. Bach’s primary model also offers a 12.4% increase in power production than the initial model’s best performance. Furthermore, the results indicate that changing the geometric parameters of the Bach model at high velocities (in turbulent flows) does not significantly affect improving performance.


2012 ◽  
Vol 189 ◽  
pp. 448-452
Author(s):  
Yan Jun Chen ◽  
Guo Qing Wu ◽  
Yang Cao ◽  
Dian Gui Huang ◽  
Qin Wang ◽  
...  

Numerical studies are conducted to research the performance of a kind of lift-drag type vertical axis wind turbine (VAWT) affected by solidity with the CFD method. Moving mesh technique is used to construct the model. The Spalart-Allmaras one equation turbulent model and the implicit coupled algorithm based on pressure are selected to solve the transient equations. In this research, how the tip speed ratio and the solidity of blade affect the power coefficient (Cp) of the small H-VAWT is analyzed. The results indicate that Cp curves exhibit approximate parabolic form with its maximum in the middle range of tip speed ratio. The two-blade wind turbine has the lowest Cp while the three-blade one is more powerful and the four-blade one brings the highest power. With the certain number of blades, there is a best chord length, and too long or too short chord length may reduce the Cp.


2012 ◽  
Vol 215-216 ◽  
pp. 1323-1326
Author(s):  
Ming Wei Xu ◽  
Jian Jun Qu ◽  
Han Zhang

A small vertical axis wind turbine with wind speed self-adapting was designed. The diameter and height of the turbine were both 0.7m. It featured that the blades were composed of movable and fixed blades, and the opening and closing of the movable blades realized the wind speed self-adapting. Aerodynamic performance of this new kind turbine was tested in a simple wind tunnel. Then the self-starting and power coefficient of the turbine were studied. The turbine with load could reliably self-start and operate stably even when the wind velocity was only 3.6 m/s. When the wind velocity was 8 m/s and the load torque was 0.1Nm, the movable blades no longer opened and the wind turbine realized the conversion from drag mode to lift mode. With the increase of wind speed, the maximum power coefficient of the turbine also improves gradually. Under 8 m/s wind speed, the maximum power coefficient of the turbine reaches to 12.26%. The experimental results showed that the new turbine not only improved the self-starting ability of the lift-style turbine, but also had a higher power coefficient in low tip speed ratio.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012144
Author(s):  
Hiroki Suzuki ◽  
Yutaka Hasegawa ◽  
O.D. Afolabi Oluwasola ◽  
Shinsuke Mochizuki

Abstract This study presents the impact of seasonal variation in air density on the operating tip-speed ratio of small wind turbines. The air density, which varies depending on the temperature, atmospheric pressure, and relative humidity, has an annual amplitude of about 5% in Tokyo, Japan. This study quantified this impact using the rotational speed equation of motion in a small wind turbine informed by previous work. This governing equation has been simplified by expanding the aerodynamic torque coefficient profile for a wind turbine rotor to the tip-speed ratio. Furthermore, this governing equation is simplified by using nondimensional forms of the air density, inflow wind velocity, and rotational speed with their characteristic values. In this study, the generator’s load is set to be constant based on a previous analysis of a small wind turbine. By considering the equilibrium between the aerodynamic torque and the load torque of the governing equation at the optimum tip-speed ratio, the impact of the variation in the air density on the operating tip-speed ratio was expressed using a simple mathematical form. As shown in this derived form, the operating tip-speed ratio was found to be less sensitive to a variation in air density than that in inflow wind velocity.


Author(s):  
Sivamani Seralathan ◽  
Micha Premkumar Thomai ◽  
Rian Leevinson Jayakumar ◽  
Basireddy Venkata Lokesh Reddy ◽  
Hariram Venkatesan

Abstract Due to increase in energy demand along with environmental awareness, the attention is shifting towards renewable energy sources. A wind turbine developed from Banki water turbine is used in this study as it starts at low-wind speeds and has high starting torque. Experimental investigations are carried out on a test rig equipped with open jet wind tunnel with wind velocity varying from 7 to 11 m/s. Later, 3D steady-state numerical analyses are performed using ANSYS CFX for better understanding of the flow physics of cross flow VAWT. The experimental investigations revealed that cross flow VAWT has a good self-starting ability at relatively low-wind speeds. A peak power coefficient (Cp, max) value of 0.059 is observed for the tip speed ratio (λ) of 0.30. As the tip speed ratio is raised further, the Cp value is observed to decrease gradually. The numerical simulations reveal the reason for the drop in Cp value. This is due to lessening of positive interaction between the flow and cross flow VAWT blades at higher λ due to vortex formation. The torque coefficient is found to decrease almost linearly from a peak value of around 0.49 at λ = 0 to a value of 0 around λ = 0.60. Polar plot between angle and torque shows that torque output of the turbine is nearly same in all directions which reinforce the potency of cross flow VAWT to be omni-directional as it produces the same performance regardless of wind directions.


Author(s):  
Peter Bachant ◽  
Martin Wosnik

The performance characteristics of two cross-flow axis hydrokinetic turbines were evaluated in UNH’s tow and wave tank. A 1m diameter, 1.25m (nominal) height three-bladed Gorlov Helical Turbine (GHT) and a 1m diameter, four-bladed spherical-helical turbine (LST), both manufactured by Lucid Energy Technologies, LLP were tested at tow speeds up to 1.5 m/s. Relationships between tip speed ratio, solidity, power coefficient (Cp), kinetic exergy efficiency, and overall streamwise drag coefficient (Cd) are explored. As expected, the spherical-helical turbine is less effective at converting available kinetic energy in a relatively low blockage, free-surface flow. The GHT was then towed in waves to investigate the effects of a periodically unsteady inflow, and an increase in performance was observed along with an increase in minimum tip speed ratio at which power can be extracted. Regarding effects of turbulence, it was previously documented that an increase in free-stream homogenous isotropic turbulence increased static stall angles for airfoils. This phenomenon was first qualitatively investigated on a smaller scale with a NACA0012 hydrofoil in a UNH water tunnel, using an upstream grid turbulence generator and using high frame-rate PIV to measure the flow field. Since the angle of attack for a cross-flow axis turbine blade oscillates with higher amplitude as tip speed ratio decreases, any delay of stall should allow power extraction at lower tip speed ratios. This hypothesis was tested experimentally on a larger scale in the tow tank by creating grid turbulence upstream of the turbine. It is shown that the range of operable tip speed ratios is slightly expanded, with a possible improvement of power coefficient at lower tip speed ratios. Drag coefficients at higher tip speed ratios seem to increase more rapidly than in the non-turbulent case.


Sign in / Sign up

Export Citation Format

Share Document