Heat Transfer and Pressure Drop Correlations for Square Channels With V-Shaped Ribs at High Reynolds Numbers

2011 ◽  
Vol 133 (11) ◽  
Author(s):  
Nawaf Y. Alkhamis ◽  
Akhilesh P. Rallabandi ◽  
Je-Chin Han

Heat transfer coefficients and friction factors are measured in a 45 deg V-shaped rib roughened square duct at high Reynolds numbers, pertaining to internal passages of land-based gas turbine engines. Reynolds numbers in this study range from 30,000 to 400,000, which is much higher than prior studies of V-shaped rib roughened channels. The dimensions of the channel are selected to ensure that the flow is in the incompressible regime. Blockage ratio e/D ranges from 0.1 to 0.18 and the spacing ratio P/e ranges from 5 to 10. Reported heat transfer coefficients are regionally averaged, measured by isothermal copper plates. Results show that the heat transfer enhancement decreases with increasing Reynolds number. The friction factor is found to be independent of the Reynolds number. The thermal performance decreases when the Reynolds number increases. 45 deg V-shaped ribs show a higher thermal performance than corresponding 45 deg angled ribs, consistent with the trend established in literature. Correlations for the Nusselt number and the friction factor as function of Re, e/D, and P/e are developed. Also developed are correlations for R and G (friction and heat transfer roughness functions, respectively) as a function of the roughness Reynolds number (e+).

Author(s):  
Sam Ghazi-Hesami ◽  
Dylan Wise ◽  
Keith Taylor ◽  
Étienne Robert ◽  
Peter Ireland

Abstract An experimental and numerical study of the convective heat transfer enhancement provided by two rib families (W and Broken W) is presented, covering Reynolds numbers (Re) between 300,000 to 900,000 in a straight channel with a rectangular cross section (AR=1.29). These high Reynolds numbers were selected for the current study since most data in the available literature typically pertain to investigations at lower Reynolds numbers. The objective of this study is to assess the local heat transfer coefficient (HTC) enhancement (compared with a smooth channel) and the overall thermal performance, taking into account the effect of increased roughness on the friction factor, of a group of W shaped turbulators over a wide range of Reynolds numbers. Furthermore, the effects of increasing the rib spacing on the thermal performance of the Broken W configuration are presented and discussed. The numerical results are compared against heat transfer measurements obtained using the Transient Liquid Crystal (TLC) method. The research shows that for the Broken W turbulators, increasing the Reynolds number is associated with an overall decrease of the thermal performance while the thermal performance of the W configuration is relatively insensitive to Reynolds number. Nevertheless, the Broken W configuration delivers higher thermal performance and heat transfer compared with the W configuration for the range of Re investigated. The Broken W configuration with a pitch spacing of 10 times the rib height was shown to provide the optimal thermal performance in the configurations investigated here.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Akhilesh P. Rallabandi ◽  
Nawaf Alkhamis ◽  
Je-Chin Han

Experiments to determine heat transfer coefficients and friction factors are conducted on a stationary 45 deg parallel rib-roughened square channel, which simulates a turbine blade internal coolant passage. Copper plates fitted with silicone heaters and thermocouples are used to measure regionally averaged heat transfer coefficients. Reynolds numbers studied range from 30,000 to 400,000. The ribs studied have rounded (filleted) edges to account for manufacturing limitations of actual engine blades. The rib height (e) to hydraulic diameter (D) ratio (e/D) ranges from 0.1 to 0.2, while spacing (p) to height ratio (p/e) ranges from 5 to 10. Results indicate an increase in the heat transfer due to the ribs at the cost of a higher friction factor, especially at higher Reynolds numbers. Round-edged ribs experience a similar heat transfer coefficient and a lower friction factor compared with sharp-edged ribs, especially at higher values of the rib height. Correlations predicting Nu and f as a function of e/D, p/e, and Re are presented. Also presented are correlations for the heat transfer and friction roughness parameters (G and R, respectively).


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Lesley M. Wright ◽  
Shang-Feng Yang ◽  
Hao-Wei Wu ◽  
Je-Chin Han ◽  
Ching-Pang Lee ◽  
...  

Abstract This paper experimentally investigates the effect of rotation on heat transfer in a typical turbine blade, three-pass, serpentine coolant channel with discrete ribbed walls at high Reynolds numbers. To achieve the high Reynolds number (Re → 190,000) and low rotation number conditions, pressurized Freon R-134a vapor is utilized as the working fluid. Cooling flow in the first passage is radial outward; after the 180 deg tip turn, the flow is radial inward through the second passage; and after the 180 deg hub turn, the flow is radial outward in the third passage. The effects of rotation on the heat transfer coefficients were investigated at rotation numbers as low as 0.07 and Reynolds numbers from 85,000 to 187,000 (based on the first passage geometry and flow conditions). Heat transfer coefficients were measured using thermocouples embedded in copper plates to provide regionally averaged heat transfer coefficients. Heat transfer enhancement due to rotation is observed on the first passage, pressure-side with radially outward flow and the second passage, suction-side with radially inward flow, but a reduction in heat transfer is observed on the third passage pressure-side with radially outward flow. In addition, results from the discrete, broken ribs are compared with those from the same serpentine coolant passage with conventional, angled ribbed walls. A significant increase in the heat transfer due to the discrete ribs is observed in the first passage. These results can be useful for understanding real rotor blade coolant passage heat transfer under high Reynolds number and low rotation number conditions.


Author(s):  
Akhilesh P. Rallabandi ◽  
Nawaf Alkhamis ◽  
Je-Chin Han

Experiments to determine heat transfer coefficients and friction factors are conducted on a stationary 45 deg parallel rib roughened square channel which simulates a turbine blade internal coolant passage. Copper plates fitted with silicone heaters and thermocouples are used to measure regionally averaged heat transfer coefficients. Reynolds numbers studied range from 30,000 to 400,000. The ribs studied have rounded (filleted) edges to account for manufacturing limitations of actual engine blades. The rib height (e) to hydraulic diameter (D) ratio (e/D) ranges from 0.1 to 0.2; spacing (p) to height ratio (p/e) ranges from 5 to 10. Results indicate an increase in heat transfer due to ribs at the cost of a higher friction factor, especially at higher Reynolds Numbers. Round edged ribs experience a similar heat transfer coefficient and a lower friction factor compared to sharp edged ribs, especially at higher values of rib height. Correlations predicting Nu and f as a function of e/D, p/e and Re are presented. Also presented are correlations for heat transfer and friction roughness parameters (G and R).


Author(s):  
Tomoko Hagari ◽  
Katsuhiko Ishida ◽  
Takeo Oda ◽  
Yasushi Douura ◽  
Yasuhiro Kinoshita

The present study investigates the heat transfer performance of W-shaped ribs in a rectangular channel with typical geometries and flow conditions for a combustor liner cooling passage. In order to assess the Reynolds number dependence on heat transfer enhancement by the ribs for the combustor cooling passage, experiments were conducted with channel Reynolds number ranging from 40,000 to 550,000. The ribs were located on one side of the channel and the rib height-to-hydraulic diameter ratio (e/Dh) was 0.006 to 0.014, which simulate the combustor liner cooling configurations. Rib pitch-to-height ratio (P/e) was 10. Rib-roughened copper plates with constant temperature were used to measure the averaged heat transfer coefficients. Measured results show that the heat transfer enhancements of about 3 were obtained over that of a flat plate at high Reynolds numbers for all cases. The slope of heat transfer coefficient becomes constant with increasing Reynolds number because of the laminar-turbulent transition around the ribs, which is considered to occur at Reynolds number based on rib height of about 1,000. Pressure loss measurements showed that the friction coefficients are constantly 3–4.5 times higher than those of a flat plate for a fully turbulent flow such as a combustor cooling passage. Pressure loss by ribs seems not to have a significant impact to the overall combustor performance. Numerical calculations were conducted additionally for all test cases. Predicted amount of heat released from the ribs contributes about 40% of overall heat release even for low ribs. Heat transfer on the rib surface is essential in the evaluation of the rib-roughened cooling passage.


Author(s):  
Tomoko Hagari ◽  
Katsuhiko Ishida ◽  
Takeo Oda ◽  
Yasushi Douura ◽  
Yasuhiro Kinoshita

The present study investigates the heat transfer performance of W-shaped ribs in a rectangular channel with typical geometries and flow conditions for a combustor liner cooling passage. In order to assess the Reynolds number dependence on heat transfer enhancement by the ribs for the combustor cooling passage, experiments were conducted with channel Reynolds number ranging from 40,000 to 550,000. The ribs were located on one side of the channel and the rib height-to-hydraulic diameter ratio (e/Dh) was 0.006–0.014, which simulate the combustor liner cooling configurations. Rib pitch-to-height ratio (P/e) was 10. Rib-roughened copper plates with constant temperature were used to measure the averaged heat transfer coefficients. Measured results show that the heat transfer enhancements of about 3 were obtained over that of a flat plate at high Reynolds numbers for all cases. The slope of heat transfer coefficient becomes constant with increasing Reynolds number because of the laminar-turbulent transition around the ribs, which is considered to occur at Reynolds number based on rib height of about 1000. Pressure loss measurements showed that the friction coefficients are constantly 3–4.5 times higher than those of a flat plate for a fully turbulent flow such as a combustor cooling passage. Pressure loss by ribs seems not to have a significant impact to the overall combustor performance. Numerical calculations were conducted additionally for all test cases. Predicted amount of heat released from the ribs contributes about 40% of the overall heat release even for low ribs. Heat transfer on the rib surface is essential in the evaluation of the rib-roughened cooling passage.


Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Akhilesh P. Rallabandi ◽  
Huitao Yang ◽  
Je-Chin Han

Systematic experiments are conducted to measure heat transfer enhancement and pressure loss characteristics on a square channel (simulating a gas turbine blade cooling passage) with two opposite surfaces roughened by 45 deg parallel ribs. Copper plates fitted with a silicone heater and instrumented with thermocouples are used to measure regionally averaged local heat transfer coefficients. Reynolds numbers studied in the channel range from 30,000 to 400,000. The rib height (e) to hydraulic diameter (D) ratio ranges from 0.1 to 0.18. The rib spacing (p) to height ratio (p/e) ranges from 5 to 10. Results show higher heat transfer coefficients at smaller values of p/e and larger values of e/D, though at the cost of higher friction losses. Results also indicate that the thermal performance of the ribbed channel falls with increasing Reynolds numbers. Correlations predicting Nusselt number (Nu) and friction factor (f¯) as a function of p/e, e/D, and Re are developed. Also developed are correlations for R and G (friction and heat transfer roughness functions, respectively) as a function of the roughness Reynolds number (e+), p/e, and e/D.


2001 ◽  
Author(s):  
Lamyaa A. El-Gabry ◽  
Deborah A. Kaminski

Abstract Measurements of the local heat transfer distribution on smooth and roughened surfaces under an array of angled impinging jets are presented. The test rig is designed to simulate impingement with cross-flow in one direction which is a common method for cooling gas turbine components such as the combustion liner. Jet angle is varied between 30, 60, and 90 degrees as measured from the impingement surface, which is either smooth or randomly roughened. Liquid crystal video thermography is used to capture surface temperature data at five different jet Reynolds numbers ranging between 15,000 and 35,000. The effect of jet angle, Reynolds number, gap, and surface roughness on heat transfer efficiency and pressure loss is determined along with the various interactions among these parameters. Peak heat transfer coefficients for the range of Reynolds number from 15,000 to 35,000 are highest for orthogonal jets impinging on roughened surface; peak Nu values for this configuration ranged from 88 to 165 depending on Reynolds number. The ratio of peak to average Nu is lowest for 30-degree jets impinging on roughened surfaces. It is often desirable to minimize this ratio in order to decrease thermal gradients, which could lead to thermal fatigue. High thermal stress can significantly reduce the useful life of engineering components and machinery. Peak heat transfer coefficients decay in the cross-flow direction by close to 24% over a dimensionless length of 20. The decrease of spanwise average Nu in the crossflow direction is lowest for the case of 30-degree jets impinging on a roughened surface where the decrease was less than 3%. The decrease is greatest for 30-degree jet impingement on a smooth surface where the stagnation point Nu decreased by more than 23% for some Reynolds numbers.


1956 ◽  
Vol 60 (541) ◽  
pp. 67-70
Author(s):  
T. A. Thomson

The blow-down type of intermittent, supersonic tunnel is attractive because of its simplicity and because relatively high Reynolds numbers can be obtained for a given size of test section. An adverse characteristic, however, is the fall of stagnation temperature during runs, which can affect experiments in several ways. The Reynolds number varies and the absolute velocity is not constant, even if the Mach number and pressure are; heat-transfer cannot be studied under controlled conditions and the experimental errors arising from the effect of heat-transfer on the boundary layer vary in time. These effects can become significant in quantitative experiments if the tunnel is large and the variation of temperature very rapid; the expense required to eliminate them might then be justified.


Sign in / Sign up

Export Citation Format

Share Document