Heat Transfer Coefficient Distribution of W and Broken W Turbulators At High Reynolds Numbers

Author(s):  
Sam Ghazi-Hesami ◽  
Dylan Wise ◽  
Keith Taylor ◽  
Étienne Robert ◽  
Peter Ireland

Abstract An experimental and numerical study of the convective heat transfer enhancement provided by two rib families (W and Broken W) is presented, covering Reynolds numbers (Re) between 300,000 to 900,000 in a straight channel with a rectangular cross section (AR=1.29). These high Reynolds numbers were selected for the current study since most data in the available literature typically pertain to investigations at lower Reynolds numbers. The objective of this study is to assess the local heat transfer coefficient (HTC) enhancement (compared with a smooth channel) and the overall thermal performance, taking into account the effect of increased roughness on the friction factor, of a group of W shaped turbulators over a wide range of Reynolds numbers. Furthermore, the effects of increasing the rib spacing on the thermal performance of the Broken W configuration are presented and discussed. The numerical results are compared against heat transfer measurements obtained using the Transient Liquid Crystal (TLC) method. The research shows that for the Broken W turbulators, increasing the Reynolds number is associated with an overall decrease of the thermal performance while the thermal performance of the W configuration is relatively insensitive to Reynolds number. Nevertheless, the Broken W configuration delivers higher thermal performance and heat transfer compared with the W configuration for the range of Re investigated. The Broken W configuration with a pitch spacing of 10 times the rib height was shown to provide the optimal thermal performance in the configurations investigated here.

Author(s):  
Arslan Saleem ◽  
Man-Hoe Kim

The air side thermal hydraulic performance of multi-louvered aluminium fin heat exchangers is investigated. A detailed study was performed to analyse the thermal performance of air over a wide range of Reynolds number i.e. from 30 to 250. Air-side heat transfer coefficient and air pressure drop were calculated and validated over the mentioned band of Reynolds numbers. Critical Reynolds number was determined numerically and the variation in flow physics along with the thermal and hydraulic performance of microchannel heat exchanger associated with R_cri has been reported. Moreover, a parametric study of the multi-louvered aluminium fin heat exchangers was also performed for 36 heat exchanger configurations with the louver angles (19-31°), fin pitches (1.0, 1.2, 1.4 mm) and flow depths (16, 20, 24 mm); and the geometric configuration exhibiting the highest thermal performance was reported. The air-side heat transfer coefficient and pressure drop results for different geometrical configurations were presented in terms of Colburn j factor and Fanning friction factor f, as a function of Reynolds number based on louver pitch.


2011 ◽  
Vol 133 (11) ◽  
Author(s):  
Nawaf Y. Alkhamis ◽  
Akhilesh P. Rallabandi ◽  
Je-Chin Han

Heat transfer coefficients and friction factors are measured in a 45 deg V-shaped rib roughened square duct at high Reynolds numbers, pertaining to internal passages of land-based gas turbine engines. Reynolds numbers in this study range from 30,000 to 400,000, which is much higher than prior studies of V-shaped rib roughened channels. The dimensions of the channel are selected to ensure that the flow is in the incompressible regime. Blockage ratio e/D ranges from 0.1 to 0.18 and the spacing ratio P/e ranges from 5 to 10. Reported heat transfer coefficients are regionally averaged, measured by isothermal copper plates. Results show that the heat transfer enhancement decreases with increasing Reynolds number. The friction factor is found to be independent of the Reynolds number. The thermal performance decreases when the Reynolds number increases. 45 deg V-shaped ribs show a higher thermal performance than corresponding 45 deg angled ribs, consistent with the trend established in literature. Correlations for the Nusselt number and the friction factor as function of Re, e/D, and P/e are developed. Also developed are correlations for R and G (friction and heat transfer roughness functions, respectively) as a function of the roughness Reynolds number (e+).


Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


1956 ◽  
Vol 60 (541) ◽  
pp. 67-70
Author(s):  
T. A. Thomson

The blow-down type of intermittent, supersonic tunnel is attractive because of its simplicity and because relatively high Reynolds numbers can be obtained for a given size of test section. An adverse characteristic, however, is the fall of stagnation temperature during runs, which can affect experiments in several ways. The Reynolds number varies and the absolute velocity is not constant, even if the Mach number and pressure are; heat-transfer cannot be studied under controlled conditions and the experimental errors arising from the effect of heat-transfer on the boundary layer vary in time. These effects can become significant in quantitative experiments if the tunnel is large and the variation of temperature very rapid; the expense required to eliminate them might then be justified.


Author(s):  
Riccardo Da Soghe ◽  
Cosimo Bianchini ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Lorenzo Mazzei

Jet array is an arrangement typically used to cool several gas turbine parts. Some examples of such applications can be found in the impingement cooled region of gas turbine airfoils or in the turbine blade tip clearances control of large aero-engines. In the open literature, several contributions focus on the impingement jets formation and deal with the heat transfer phenomena that take place on the impingement target surface. However, deficiencies of general studies emerge when the internal convective cooling of the impinging system feeding channels is concerned. In this work, an aerothermal analysis of jet arrays for active clearance control (ACC) was performed; the aim was the definition of a correlation for the internal (i.e., within the feeding channel) convective heat transfer coefficient augmentation due to the coolant extraction operated by the bleeding holes. The data were taken from a set of computational fluid-dynamics (CFD) Reynolds-averaged Navier–Stokes (RANS) simulations, in which the behavior of the cooling system was investigated over a wide range of fluid-dynamics conditions. More in detail, several different holes arrangements were investigated with the aim of evaluating the influence of the hole spacing on the heat transfer coefficient distribution. Tests were conducted by varying the feeding channel Reynolds number in a wide range of real engine operative conditions. An in depth analysis of the numerical data set has underlined the opportunity of an efficient reduction through the local suction ratio (SR) of hole and feeding pipe, local Reynolds number, and manifold porosity: the dependence of the heat transfer coefficient enhancement factor (EF) from these parameter is roughly exponential.


1968 ◽  
Vol 90 (4) ◽  
pp. 464-468 ◽  
Author(s):  
R. Briller ◽  
R. L. Peskin

An experiment was performed to determine the convective heat-transfer coefficient to heated and cooled gas solids suspensions at a Reynolds number of 130,000. Measurements of the heat transfer were performed by traversing the stream at various locations along the pipe with specially designed probes which measured air and particle temperature locally. The results showed that for a high Reynolds number, the heat-transfer coefficient for the suspension appears to be equal to that of the pure gas at the same Reynolds number, and independent of solids loading ratio, heating or cooling, and particle size (between 0.0011 and 0.0058 in. dia).


1992 ◽  
Vol 114 (4) ◽  
pp. 893-900 ◽  
Author(s):  
A. Sahnoun ◽  
R. L. Webb

This paper is concerned with prediction of the air-side heat transfer coefficient of the louver fin geometry used in automotive radiators. An analytical model was developed to predict the heat transfer coefficient and friction factor of the louver fin geometry. The model is based on boundary layer and channel flow equations, and accounts for the “flow efficiency” in the array, as previously reported by Webb and Trauger. The model has no empirical constants. The model allows independent specifications of all of the geometric parameters of the louver fin. This includes the number of louvers over the flow depth, the louver width and length, and the louver angle. The model was validated by predicting the heat transfer coefficient and friction factor of 32 louver arrays tested by Davenport, which spanned hydraulic diameter based Reynolds numbers of 300–2800. At the highest Reynolds number, all of the heat transfer coefficients were predicted within a maximum error of −14 / + 25 percent, and a mean error of ± 8 percent. The high Reynolds number friction factors were predicted with a maximum error −22 /+ 26 percent, with a mean error of ± 8 percent. The error ratios were slightly higher at the lowest Reynolds numbers.


2001 ◽  
Author(s):  
Ahmad Fakheri ◽  
Abdelrahman H. A. Alnaeim

Abstract Forced convection heat transfer from helicoidal pipes is experimentally investigated over a wide range of operating conditions. Based on the experimental results, a characteristic length incorporating the tube diameter, the coil diameter, and the coil spacing, is proposed as the relevant scale for defining Nusselt and Reynolds numbers. Based on this characteristic length, Nusselt number for helicoidal pipes can be predicated from the correlations available for cylinders in the range of available experimental data. It is shown that the performance of the coils depends on the Reynolds number. At high Reynolds numbers, the heat transfer coefficient is essentially equal to that of the straight pipe and the coil pitch has little influence on the heat transfer rate. On the other hand, at low Reynolds numbers, the heat transfer coefficient is lower than that of a straight pipe and its value is a strong function of the coil spacing.


Author(s):  
Humberto Santos ◽  
Wei Li ◽  
David Kukulka

Abstract A CFD investigation was carried out to compare the thermal performance of the 1EHT-1 and 1EHT-2 tubes with a smooth surface tube using R410A at 311K as working fluid. These tubes have enhanced heat transfer area generated by a series of dimples/protrusions and petals distributed over its surface. All the stages of this simulation were conducted using Ansys Fluent. Initially, the physical model of the fluid domain was developed using the Design Modeler module, with an internal tube diameter of 8.32mm, and then imported to the meshing module for the griding process. To ensure accuracy in the results, the mesh average orthogonal quality was kept above 0.7, with the minimum orthogonal quality higher than 0.1. For the numerical simulation, SST k-omega model was used, with Reynolds number ranging from 16000 to 35000. The results of the heat transfer coefficient were validated based on previous experimental work. As expected, at the lowest Reynolds number tested, the heat transfer coefficient for the 1EHT-1 tube was 1097.5 W.K−1.m−2, followed by 1058 W.K−1.m−2 for the 1EHT-2 and nearly 846 W.K−1.m−2 for the smooth tube. When compared with the experimental results, a good agreement was observed, and the HTC relative error (RE) for all tubes tested was below 10%. It is possible to conclude that the CFD model used here presents as powerful tool to simulate and predict heat transfer with good accuracy, allowing optimization in heat exchangers design and operational parameters.


Sign in / Sign up

Export Citation Format

Share Document