Simultaneous Consideration of Scalable-Reconfigurable Manufacturing System Investment and Operating Costs

Author(s):  
Hector J. Carlo ◽  
J. Patrick Spicer ◽  
Adamaris Rivera-Silva

The design of manufacturing systems is typically decoupled from ordering policy decisions. Traditionally, the system design decision is made to minimize the total investment cost given some system capacity requirements. Then, after the system is implemented, the ordering policy decisions are made. In this paper, a coupled approach is presented whereby the manufacturing system design is jointly developed with the ordering policy to minimize the total cost of inventory holding, setup, and equipment investment in a multiproduct system. The methodology is presented in the context of scalable-reconfigurable manufacturing systems (scalable-RMSs). First, a linear integer mathematical formulation to minimize investment cost in a single-product, multistage scalable-RMS is presented. The mathematical formulation is then extended to consider multiple products. Due to the nonlinear nature of the multiproduct formulation, an iterative algorithm is developed. Lastly, a mathematical formulation to simultaneously minimize the system investment and operating costs (i.e., the coupled approach) is presented. Given the complexity of the formulation, a genetic algorithm (GA)-based heuristic is proposed. Twenty four instances of the problem were generated to test the proposed methodologies. Experimental results indicate that the proposed GA-based heuristic is efficient in terms of solution quality and runtime. Further, experimental results indicate that the proposed coupled approach reduces the total costs by an average of 25% over the decoupled approach. It is concluded that the coupled approach (solved with the proposed GA-based heuristic) outperforms the decoupled approach (solved to optimality) in all instances considered.

Author(s):  
J. Patrick Spicer ◽  
Hector J. Carlo

Scalable reconfigurable manufacturing systems (scalable-RMS) consist of standardized modular equipment that can be quickly added or removed to adjust the production capacity. Each modular machine, referred to as a scalable reconfigurable machine tool (scalable-RMT), is composed of identical modules that can be added to, or removed from the machine depending on its required throughput. In previous work, conceptual scalable-RMTs have been described. Additional scalable-RMTs are presented in this paper to highlight the applicability of this concept in manufacturing. As an extension to existing scalable-RMS literature, this paper incorporates multiple products in the system configuration design. Specifically, this paper proposes an integer programming based iterative algorithm for finding the minimum cost configuration of a multi-product system. It is shown that the proposed algorithm converges to the optimal solution under the majority of practical conditions. Then, a mathematical formulation to minimize the system investment and operational costs in a multi-product scalable-RMS is presented. A numerical example compares the solution obtained using the traditional approach of determining the system design and then the inventory control policy versus the proposed simultaneous approach. It is concluded that the simultaneous approach yields significant improvement over the traditional (decoupled) approach.


2021 ◽  
Author(s):  
Imen Khettabi ◽  
Lyes Benyoucef ◽  
Mohamed Amine Boutiche

Abstract Nowadays, manufacturing systems should be cost-effective and environmentally harmless to cope with various challenges in today's competitive markets. In this paper, we aim to solve an environmental oriented multi-objective reconfigurable manufacturing system design (ie., sustainable reconfigurable machines and tools selection) in the case of a single unit process plan generation. A non-linear multi-objective integer program (NL-MOIP) is presented first, where four objectives are minimised respectively, the total production cost, the total production time, the amount of the greenhouse gases emitted by machines and the hazardous liquid wastes. Second, to solve the problem, we propose four adapted versions of evolutionary approaches, namely two versions of the well known non-dominated sorting genetic algorithm (NSGA-II and NSGA-III), weighted genetic algorithms (WGA) and random weighted genetic algorithms (RWGA). To illustrate the efficiency of the four approaches, several instances of the problem are experimented and the obtained results are analysed using three metrics respectively hypervolume, spacing metric and cardinality of the mixed Pareto fronts. Moreover, the influences of the probabilities of genetic operators on the convergence of the adapted NSGA-III are analysed and TOPSIS method is used to help the decision maker ranking and selecting the best process plans.


2014 ◽  
Vol 556-562 ◽  
pp. 6034-6037
Author(s):  
Dong Man Yu ◽  
Zhi Hua Gao ◽  
Xiao Jing Li ◽  
Di Wang

Reconfigurable manufacturing system is essential for sustainable change, rapid response ability important characteristics, research, development and application of manufacturing system. The main architecture and major characteristics of reconfigurable manufacturing systems is explored. Normally, the quality of RMS can be evaluated by several factors. Firstly, the gross cost of production and reconstruction should be less. Secondly, The time of design and manufacture (ascent time) should be shorter. Thirdly, the utilization ratio of existed resource should reach to the utmost. Finally, the cargo stream planning in common space should keep in optimal condition. At last, The author give an example to shown the RMS, the hydraulic integrated package for a gearshift device in automobile, are mentioned to compare and analyze.


2019 ◽  
Vol 8 (2) ◽  
pp. 195-206 ◽  
Author(s):  
Ashutosh Singh ◽  
Mohammad Asjad ◽  
Piyush Gupta ◽  
Jahangir Quamar

The traditional structure of machines (such as lathe, milling, shaper, slotter, drilling and planer) has become questionable because of the modular concepts (such as modularity, scalability, convertibility, mobility and flexibility) and reconfiguration becomes a promising approach towards modular manufacturing machines, in which manufacturing techniques are independent of changes. In this area, reconfigurable machine tool (RMT) forms a new class of modular machines in current manufacturing scenario where the manufacturing industry put a strong pressure on good quality and price reduction. The capabilities of the machines tool and manufacturing systems in reconfigurable manufacturing system (RMS) change with each reconfiguration (both software and hardware modules). In this case, an approach is presented for reconfiguration of horizontal shaper machine for developing the modular shaper cum slotter machine in a manufacturing system by adding some auxiliary (like Scott Russel mechanism) and some basic modules and the reconfiguration features of traditional shaper and slotter machine are also discussed. The proposed approach is illustrated with a figure, which has been designed on 3-D design tool (solid-works software platform). It is expected that, this work will help designers and practising engineers by making them aware of the reconfiguration mechanisms on traditional shaper machine, which have become a necessity for the very survival of manufacturing by lowering the operational costs.


Author(s):  
A M Farid

In recent years, many design approaches have been developed for automated manufacturing systems in the fields of reconfigurable manufacturing systems (RMSs), holonic manufacturing systems (HMSs), and multiagent systems (MASs). One of the principle reasons for these developments has been to enhance the reconfigurability of a manufacturing system, allowing it to adapt readily to changes over time. However, to date reconfigurability assessment has been limited. Hence the efficacy of these design approaches remains inconclusive. This paper is the second of two in this issue to address reconfigurability measurement. Specifically, ‘reconfiguration ease’ has often been qualitatively argued to depend on the system's modularity. For this purpose, this paper develops modularity measures in a three-step approach. Firstly, the nature of typical manufacturing system interfaces is discussed. Next, the qualitative understanding underlying existing modularity measures is distilled. Finally, these understandings are synthesized for a manufacturing system context. This approach forms the second of two pillars that together lay the foundation for an integrated reconfigurability measurement process described elsewhere.


Author(s):  
J. T. Black ◽  
David S. Cochran

AND THE WORLD CAME TO SEE. When a new manufacturing system design (MSD) is developed by a company or a group of companies, the rest of the world comes to those factories to learn about the new system. In the last 200 years, three new factory designs have evolved, called the job shop, the flow shop and the lean shop. Each is based on a new system design — a functional design, a product flow design and a linked cell design. New factory designs lead to new industrial leaders and even new industrial revolutions (IR’s). Two appendixes are included: One outlines the implementation strategy for the lean shop and the other is a discussion of lean manufacturing from the viewpoint of K. Hitomi, Japanese professor of manufacturing systems engineering.


Author(s):  
Valerie Maier-Speredelozzi ◽  
Theodor Freiheit ◽  
S. Jack Hu

Conversions between different products manufactured on the same system often require time-consuming shut-downs and thus, incur productivity losses. Producing multiple products on the same line complicates system productivity analysis because production rates, failure rates, and repair rates vary between different part types. Certain manufacturing system configurations have advantages when convertibility is considered. Ideally, manufacturing lines that produce a mix of products or undergo a product rollover would not see any loss in production relative to lines that continuously produce a single product throughout the system lifetime. This paper investigates the interactions between convertibility and productivity for different manufacturing system configurations, using analytical methods. The methods presented in this paper can be applied to assembly or machining stations in dedicated, flexible, or reconfigurable manufacturing systems. When designing such systems, it is important to recognize that more convertible systems are more productive over the long-term, as product designs change.


Author(s):  
Yifan Dong ◽  
Tangbin Xia ◽  
Lei Xiao ◽  
Ershun Pan ◽  
Lifeng Xi

Abstract Real-time condition acquisition and accurate time-to-failure (TTF) prognostic of machines are both crucial in the condition based maintenance (CBM) scheme for a manufacturing system. Most of previous researches considered the degradation process as a population-specific reliability characteristics and ignored the hidden differences among the degradation process of individual machines. Moreover, existing maintenance scheme are mostly focus on the manufacturing system with fixed structure. These proposed maintenance scheme could not be applied for the reconfigurable manufacturing system, which is quite adjustable to the various product order and customer demands in the current market. In this paper, we develop a systematic predictive maintenance (PM) framework including real-time prognostic and dynamic maintenance window (DMW) scheme for reconfigurable manufacturing systems to fill these gaps. We propose a real-time Bayesian updating prognostic model using sensor-based condition information for computing each individual machine’s TTFs, and a dynamic maintenance window scheme for the maintenance work scheduling of a reconfigurable manufacturing system. This enables the real-time prognosis updating, the rapid decision making for reconfigurable manufacturing systems, and the notable maintenance cost reduction.


2003 ◽  
Vol 02 (01) ◽  
pp. 71-87 ◽  
Author(s):  
A. OYARBIDE ◽  
T. S. BAINES ◽  
J. M. KAY ◽  
J. LADBROOK

Discrete event simulation is a popular aid for manufacturing system design; however in application this technique can sometimes be unnecessarily complex. This paper is concerned with applying an alternative technique to manufacturing system design which may well provide an efficient form of rough-cut analysis. This technique is System Dynamics, and the work described in this paper has set about incorporating the principles of this technique into a computer based modelling tool that is tailored to manufacturing system design. This paper is structured to first explore the principles of System Dynamics and how they differ from Discrete Event Simulation. The opportunity for System Dynamics is then explored, and this leads to defining the capabilities that a suitable tool would need. This specification is then transformed into a computer modelling tool, which is then assessed by applying this tool to model an engine production facility.


Sign in / Sign up

Export Citation Format

Share Document