scholarly journals Using In Vivo Cine and 3D Multi-Contrast MRI to Determine Human Atherosclerotic Carotid Artery Material Properties and Circumferential Shrinkage Rate and Their Impact on Stress/Strain Predictions

2012 ◽  
Vol 134 (1) ◽  
Author(s):  
Haofei Liu ◽  
Gador Canton ◽  
Chun Yuan ◽  
Chun Yang ◽  
Kristen Billiar ◽  
...  

In vivo magnetic resonance image (MRI)-based computational models have been introduced to calculate atherosclerotic plaque stress and strain conditions for possible rupture predictions. However, patient-specific vessel material properties are lacking in those models, which affects the accuracy of their stress/strain predictions. A noninvasive approach of combining in vivo Cine MRI, multicontrast 3D MRI, and computational modeling was introduced to quantify patient-specific carotid artery material properties and the circumferential shrinkage rate between vessel in vivo and zero-pressure geometries. In vivo Cine and 3D multicontrast MRI carotid plaque data were acquired from 12 patients after informed consent. For each patient, one nearly-circular slice and an iterative procedure were used to quantify parameter values in the modified Mooney-Rivlin model for the vessel and the vessel circumferential shrinkage rate. A sample artery slice with and without a lipid core and three material parameter sets representing stiff, median, and soft materials from our patient data were used to demonstrate the effect of material stiffness and circumferential shrinkage process on stress/strain predictions. Parameter values of the Mooney-Rivlin models for the 12 patients were quantified. The effective Young’s modulus (YM, unit: kPa) values varied from 137 (soft), 431 (median), to 1435 (stiff), and corresponding circumferential shrinkages were 32%, 12.6%, and 6%, respectively. Using the sample slice without the lipid core, the maximum plaque stress values (unit: kPa) from the soft and median materials were 153.3 and 96.2, which are 67.7% and 5% higher than that (91.4) from the stiff material, while the maximum plaque strain values from the soft and median materials were 0.71 and 0.293, which are about 700% and 230% higher than that (0.089) from the stiff material, respectively. Without circumferential shrinkages, the maximum plaque stress values (unit: kPa) from the soft, median, and stiff models were inflated to 330.7, 159.2, and 103.6, which were 116%, 65%, and 13% higher than those from models with proper shrinkage. The effective Young’s modulus from the 12 human carotid arteries studied varied from 137 kPa to 1435 kPa. The vessel circumferential shrinkage to the zero-pressure condition varied from 6% to 32%. The inclusion of proper shrinkage in models based on in vivo geometry is necessary to avoid over-estimating the stresses and strains by up 100%. Material stiffness had a greater impact on strain (up to 700%) than on stress (up to 70%) predictions. Accurate patient-specific material properties and circumferential shrinkage could considerably improve the accuracy of in vivo MRI-based computational stress/strain predictions.

2015 ◽  
Vol 137 (8) ◽  
Author(s):  
Longling Fan ◽  
Jing Yao ◽  
Chun Yang ◽  
Dalin Tang ◽  
Di Xu

Methods to quantify ventricle material properties noninvasively using in vivo data are of great important in clinical applications. An ultrasound echo-based computational modeling approach was proposed to quantify left ventricle (LV) material properties, curvature, and stress/strain conditions and find differences between normal LV and LV with infarct. Echo image data were acquired from five patients with myocardial infarction (I-Group) and five healthy volunteers as control (H-Group). Finite element models were constructed to obtain ventricle stress and strain conditions. Material stiffening and softening were used to model ventricle active contraction and relaxation. Systolic and diastolic material parameter values were obtained by adjusting the models to match echo volume data. Young's modulus (YM) value was obtained for each material stress–strain curve for easy comparison. LV wall thickness, circumferential and longitudinal curvatures (C- and L-curvature), material parameter values, and stress/strain values were recorded for analysis. Using the mean value of H-Group as the base value, at end-diastole, I-Group mean YM value for the fiber direction stress–strain curve was 54% stiffer than that of H-Group (136.24 kPa versus 88.68 kPa). At end-systole, the mean YM values from the two groups were similar (175.84 kPa versus 200.2 kPa). More interestingly, H-Group end-systole mean YM was 126% higher that its end-diastole value, while I-Group end-systole mean YM was only 29% higher that its end-diastole value. This indicated that H-Group had much greater systole–diastole material stiffness variations. At beginning-of-ejection (BE), LV ejection fraction (LVEF) showed positive correlation with C-curvature, stress, and strain, and negative correlation with LV volume, respectively. At beginning-of-filling (BF), LVEF showed positive correlation with C-curvature and strain, but negative correlation with stress and LV volume, respectively. Using averaged values of two groups at BE, I-Group stress, strain, and wall thickness were 32%, 29%, and 18% lower (thinner), respectively, compared to those of H-Group. L-curvature from I-Group was 61% higher than that from H-Group. Difference in C-curvature between the two groups was not statistically significant. Our results indicated that our modeling approach has the potential to determine in vivo ventricle material properties, which in turn could lead to methods to infer presence of infarct from LV contractibility and material stiffness variations. Quantitative differences in LV volume, curvatures, stress, strain, and wall thickness between the two groups were provided.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Qingyu Wang ◽  
Dalin Tang ◽  
Gador Canton ◽  
Jian Guo ◽  
Xiaoya Guo ◽  
...  

It is hypothesized that artery stiffness may be associated with plaque progression. However, in vivo vessel material stiffness follow-up data is lacking in the literature. In vivo 3D multi-contrast and Cine magnetic resonance imaging (MRI) carotid plaque data were acquired from 8 patients with follow-up (18 months) with written informed consent obtained. Cine MRI and 3D thin-layer models were used to determine parameter values of the Mooney-Rivlin models for the 81slices from 16 plaques (2 scans/patient) using our established iterative procedures. Effective Young’s Modulus (YM) values for stretch ratio [1.0,1.3] were calculated for each slice for analysis. Stress-stretch ratio curves from Mooney-Rivlin models for the 16 plaques and 81 slices are given in Fig. 1. Average YM value of the 81 slices was 411kPa. Slice YM values varied from 70 kPa (softest) to 1284 kPa (stiffest), a 1734% difference. Average slice YM values by vessel varied from 109 kPa (softest) to 922 kPa (stiffest), a 746% difference. Location-wise, the maximum slice YM variation rate within a vessel was 306% (139 kPa vs. 564 kPa). Average slice YM variation rate within a vessel for the 16 vessels was 134%. Average variation of YM values from baseline (T1) to follow up (T2) for all patients was 61.0%. The range of the variation of YM values was [-28.4%, 215%]. For progression study, YM increase (YMI=YM T2 -TM T1 ) showed negative correlation with plaque progression measured by wall thickness increase (WTI), (r= -0.6802, p=0.0634). YM T2 showed strong negative correlation with WTI (r= -0.7764, p=0.0235). Correlation between YM T1 and WTI was not significant (r= -0.4353, p= 0.2811). Conclusion In vivo carotid vessel material properties have large variations from patient to patient, along the vessel segment within a patient, and from baseline to follow up. Use of patient-specific, location specific and time-specific material properties could potentially improve the accuracy of model stress/strain calculations.


2019 ◽  
Vol 16 (03) ◽  
pp. 1842014 ◽  
Author(s):  
Longling Fan ◽  
Jing Yao ◽  
Chun Yang ◽  
Di Xu ◽  
Dalin Tang

A new modeling approach using two different zero-load geometries (diastole and systole) was introduced to properly model active contraction and relaxation for more accurate stress/strain calculations. Ventricle diastole and systole material parameter values were also determined based on in vivo data. Echo-based computational two-layer left ventricle (LV) models using one zero-load geometry (1G) and two zero-load geometries (2G) were constructed. Material parameter values in Mooney–Rivlin models were also adjusted to match echo LV volume data. Effective Young’s moduli (YM) were calculated for ventricle materials for easy comparison. The 2G models may lead to more accurate ventricle stress/strain calculations and material parameter value estimations.


Ultrasonics ◽  
2012 ◽  
Vol 52 (3) ◽  
pp. 402-411 ◽  
Author(s):  
T. Khamdaeng ◽  
J. Luo ◽  
J. Vappou ◽  
P. Terdtoon ◽  
E.E. Konofagou

2018 ◽  
Author(s):  
Minliang Liu ◽  
Liang Liang ◽  
Haofei Liu ◽  
Ming Zhang ◽  
Caitlin Martin ◽  
...  

AbstractIt is well known that residual deformations/stresses alter the mechanical behavior of arteries, e.g. the pressure-diameter curves. In an effort to enable personalized analysis of the aortic wall stress, approaches have been developed to incorporate experimentally-derived residual deformations into in vivo loaded geometries in finite element simulations using thick-walled models. Solid elements are typically used to account for “bending-like” residual deformations. Yet, the difficulty in obtaining patient-specific residual deformations and material properties has become one of the biggest challenges of these thick-walled models. In thin-walled models, fortunately, static determinacy offers an appealing prospect that allows for the calculation of the thin-walled membrane stress without patient-specific material properties. The membrane stress can be computed using forward analysis by enforcing an extremely stiff material property as penalty treatment, which is referred to as the forward penalty approach. However, thin-walled membrane elements, which have zero bending stiffness, are incompatible with the residual deformations, and therefore, it is often stated as a limitation of thin-walled models. In this paper, by comparing the predicted stresses from thin-walled models and thick-walled models, we demonstrate that the transmural mean hoop stress is the same for the two models and can be readily obtained from in vivo clinical images without knowing the patient-specific material properties and residual deformations. Computation of patient-specific mean hoop stress can be greatly simplified by using membrane model and the forward penalty approach, which may be clinically valuable.


2019 ◽  
Vol 16 (03) ◽  
pp. 1842002 ◽  
Author(s):  
Qingyu Wang ◽  
Dalin Tang ◽  
Gador Canton ◽  
Thomas S. Hatsukami ◽  
Kristen L. Billiar ◽  
...  

Patient-specific vessel material properties are in general lacking in image-based computational models. Carotid plaque stress and strain conditions with in vivo material and old material models were investigated (8 patients, 16 plaques). Plaque models using patient-specific in vivo vessel material properties showed significant differences from models using old material properties from the literature on stress and strain calculations. These differences demonstrated that models using in vivo material properties could improve the accuracy of stress and strain calculations which could potentially lead to more accurate plaque vulnerability assessment.


Author(s):  
Dalin Tang ◽  
Chun Yang ◽  
Shunichi Kobayashi ◽  
David N. Ku

2D and 3D multi-physics experiment-based nonlinear models with fluid-structure interactions (FSI) and structure-structure interactions (SSI) are introduced to model blood flow and stress/strain distributions in stenotic arteries with lipid pools. Material properties for the vessel and plaque are based on experimental measurements and information available in the literature (Huang et. al., 2001; Tang et. al., 2001). The Navier-Stokes equations are used as the governing equations for the fluid. Mooney-Rivlin models are used for both arteries and lipid cores. A well-tested finite element package ADINA is used to solve the models to perform flow and stress/strain analysis. Our results indicate that artery plaque stress/strain distributions are affected considerably (50%–400% or even more) by vessel material properties, stenosis severity and eccentricity, tube axial pre-stretch, pressure conditions, lipid core material property, size, position and geometry, and fluid-structure and structure-structure (vessel wall and lipid core) interactions. Differences in model assumptions and controlling factor specifications must be taken into consideration when interpreting the significance of computational results.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Tien Tuan Dao ◽  
Philippe Pouletaut

The prediction of lower limb muscle and contact forces may provide useful knowledge to assist the clinicians in the diagnosis as well as in the development of appropriate treatment for musculoskeletal disorders. Research studies have commonly estimated joint contact forces using model-based muscle force estimation due to the lack of a reliable contact model and material properties. The objective of this present study was to develop a Hertzian integrated contact model. Then, in vivo elastic properties of the Total Knee Replacement (TKR) implant were identified using in vivo contact forces leading to providing reliable material properties for modeling purposes. First, a patient specific rigid musculoskeletal model was built. Second, a STL-based implant model was designed to compute the contact area evolutions during gait motions. Finally, a Hertzian integrated contact model was defined for the in vivo identification of elastic properties (Young’s modulus and Poisson coefficient) of the instrumented TKR implant. Our study showed a potential use of a new approach to predict the contact forces without knowledge of muscle forces. Thus, the outcomes may lead to accurate and reliable prediction of human joint contact forces for new case study.


Author(s):  
Haofei Liu ◽  
Gador Canton ◽  
Chun Yuan ◽  
Marina Ferguson ◽  
Chun Yang ◽  
...  

Atherosclerotic plaque rupture is believed to be associated with high critical stress exceeding plaque cap material strength. In vivo magnetic resonance image (MRI)-based computational models have been introduced to calculate critical plaque stress and assess plaque vulnerability [1–5]. However, accuracy of computational stress predictions is heavily dependent on the data used by the models. Patient-specific plaque material properties are desirable for accurate stress predictions but are not currently available. In this paper, non-invasive in vivo Cine and 3D multicontrast MRI data and modeling techniques were combined to obtain patient-specific plaque material properties to improve model prediction accuracies. A 2D human carotid plaque model was used to demonstrate impact of material stiffness on computational stress predictions.


Sign in / Sign up

Export Citation Format

Share Document