The Analytical Solutions of Incompressible Saturated Poroelastic Circular Mindlin’s Plate

2012 ◽  
Vol 79 (5) ◽  
Author(s):  
P. H. Wen

In this paper the fundamental solutions for an infinite poroelastic moderately thick plate and analytical solutions for a circular plate saturated by a incompressible fluid are derived in the Laplace transform domain. In order to obtain the solutions in the time domain, the Durbin’s Laplace transform inverse method has been used with high accuracy. The formulations using the boundary integral equation method can be derived directly with these fundamental solutions. In addition, the analytical solutions for a circular plate can be used to validate the accuracy of numerical algorithms such as the boundary element method and the method of fundamental solution. The deflection, moment, and equivalent moment in the time domain for a circular plate, subjected to uniform load and a concentrated force are presented, respectively. The analytical solutions demonstrate that interaction between the solid and flow is significant.

2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Jui-Hsiang Kao

This research develops an Advance-Tracing Boundary Element Method in the time domain to calculate the waves that radiate from an immersed obstacle moving with random acceleration. The moving velocity of the immersed obstacle is multifrequency and is projected along the normal direction of every element on the obstacle. The projected normal velocity of every element is presented by the Fourier series and includes the advance-tracing time, which is equal to a quarter period of the moving velocity. The moving velocity is treated as a known boundary condition. The computing scheme is based on the boundary integral equation in the time domain, and the approach process is carried forward in a loop from the first time step to the last. At each time step, the radiated pressure on each element is updated until obtaining a convergent result. The Advance-Tracing Boundary Element Method is suitable for calculating the radiating problem from an arbitrary obstacle moving with random acceleration in the time domain and can be widely applied to the shape design of an immersed obstacle in order to attain security and confidentiality.


1986 ◽  
Vol 29 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Christian Constanda

Kirchhoff's kinematic hypothesis that leads to an approximate two-dimensional theory of bending of elastic plates consists in assuming that the displacements have the form [1]In general, the Dirichlet and Neumann problems for the equilibrium equations obtained on the basis of (1.1) cannot be solved by the boundary integral equation method both inside and outside a bounded domain because the corresponding matrix of fundamental solutions does not vanish at infinity [2]. However, as we show in this paper, the method is still applicable if the asymptotic behaviour of the solution is suitably restricted.


2017 ◽  
Vol 08 (03n04) ◽  
pp. 1750007
Author(s):  
Pooneh Maghoul ◽  
Behrouz Gatmiri

This paper presents an advanced formulation of the time-domain two-dimensional (2D) boundary element method (BEM) for an elastic, homogeneous unsaturated soil subjected to dynamic loadings. Unlike the usual time-domain BEM, the present formulation applies a convolution quadrature which requires only the Laplace-domain instead of the time-domain fundamental solutions. The coupled equations governing the dynamic behavior of unsaturated soils ignoring contributions of the inertia effects of the fluids (water and air) are derived based on the poromechanics theory within the framework of a suction-based mathematical model. In this formulation, the solid skeleton displacements [Formula: see text], water pressure [Formula: see text] and air pressure [Formula: see text] are presumed to be independent variables. The fundamental solutions in Laplace transformed-domain for such a dynamic [Formula: see text] theory have been obtained previously by authors. Then, the BE formulation in time is derived after regularization by partial integrations and time and spatial discretizations. Thereafter, the BE formulation is implemented in a 2D boundary element code (PORO-BEM) for the numerical solution. To verify the accuracy of this implementation, the displacement response obtained by the boundary element formulation is verified by comparison with the elastodynamics problem.


Sign in / Sign up

Export Citation Format

Share Document