Verification of the Estimation Methods of Strain Range in Notched Specimens Made of Mod.9Cr-1Mo Steel

2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Masanori Ando ◽  
Yuichi Hirose ◽  
Shingo Date ◽  
Sota Watanabe ◽  
Yasuhiro Enuma ◽  
...  

Several methods of estimating strain range at a structural discontinuity have been developed in order to assess component reliability. In a component design at elevated temperature, estimation of strain range is required to evaluate the fatigue and creep-fatigue damage. Therefore, estimation of strain range is one of the most important issues when evaluating the integrity of a component during its lifetimes. To verify the methods of estimating strain range for discontinuous structures, low cycle fatigue tests were carried out with notched specimens. All the specimens were made of Mod.9Cr-1Mo steel, because it is a candidate material for a primary and secondary heat transport system components of Japan Sodium-cooled Fast Reactor (JSFR). Displacement control fatigue tests and thermal fatigue tests were performed by ordinary uniaxial push–pull test machine and equipment generating the thermal gradient in the notched plate by induction heating. Several notch radii were employed to vary the stress concentration level in both kinds of tests. Crack initiation and propagation process during the tests were observed by a digital microscope and the replica method to define the failure cycles. Elastic and inelastic finite element analyses were also performed to estimate strain range for predicting fatigue life. Then, these predictions were compared with the test results. Several methods such as stress redistribution locus (SRL) method, simple elastic follow-up (SEF) method, Neuber's law, and the procedures employed by elevated temperature design codes were applied. Through these comparisons, the applicability and conservativeness of these strain range estimation methods, which is the basis of the fatigue and creep-fatigue life prediction, are discussed.

Author(s):  
Masanori Ando ◽  
Yuichi Hirose ◽  
Shingo Date ◽  
Sota Watanabe ◽  
Yasuhiro Enuma ◽  
...  

Several innovative prediction methods of strain range have been developed in order to apply to the Generation IV plants. In a component design at elevated temperature, ‘strain range’ is used to calculate the fatigue and creep-fatigue damage. Therefore, prediction of ‘strain range’ is one of the most important issues to evaluate the components’ integrity during these lifetimes. To verify the strain prediction method of discontinues structures at evaluated temperature, low cycle fatigue tests were carried out with notched specimens. All the specimens were made of Mod.9Cr-1Mo, because it is a candidate material for a primary and secondary heat transports system components of JSFR (Japanese Sodium Fast Reactor). Deformation control fatigue tests and thermal fatigue tests were performed by ordinary uni-axial push-pull test machine and equipment generating the thermal gradient in the notched plate by induction heating. Stress concentration level was changed by varying the notch radius in the both kind of tests. Crack initiation and propagation process during the fatigue test were observed by the digital micro-scope and replica method. Elastic and inelastic FEAs were also carried out to estimate the ‘strain range’ for the prediction of fatigue life. Then the ranges of several strain predictions and estimations were compared with the test results. These predictions were based on the sophisticated technique to estimate the ‘strain range’ from elastic FEA. Stress reduction locus (SRL) method, simple elastic follow-up method, Neuber’s rule method and the methods supplied by elevated temperature design standards were applied. Through these results, the applicability and conservativeness of these strain prediction and estimation methods, which is the basis of the creep-fatigue life prediction, is discussed.


2007 ◽  
Vol 353-358 ◽  
pp. 190-194
Author(s):  
Nian Jin Chen ◽  
Zeng Liang Gao ◽  
Wei Zhang ◽  
Yue Bao Le

The law of low-cycle fatigue with hold time at elevated temperature is investigated in this paper. A new life prediction model for the situation of fatigue and creep interaction is developed, based on the damage due to fatigue and creep. In order to verify the prediction model, strain-controlled low-cycle fatigue tests at temperature 693K, 823K and 873K and fatigue tests with various hold time at temperature 823K and 873K for 316L austenitic stainless steel were carried out. Good agreement is found between the predictions and experimental results.


2005 ◽  
Vol 475-479 ◽  
pp. 1429-1432 ◽  
Author(s):  
Dae Whan Kim ◽  
Chang Hee Han ◽  
Woo Seog Ryu

Fatigue tests of type 316 and 316LN stainless steel were conducted at RT and 600ı, 0.8~1.5% strain range for low cycle fatigue (LCF), 300~600ı, 0% strain range for thermal fatigue (TF) and 300~600ı, 2% strain range, in-phase or out-of-phase for thermomechanical fatigue (TMF). LCF, TF, and TMF lives were increased but saturation stresses were decreased with the addition of nitrogen. The higher temperature was the lower TF life at a same temperature change. The minimum temperature change for TF failure was more than 100ı. TMF life was higher at inphase condition than at out-of-phase condition. Fracture mode was transgranular for LCF and outof- phase of TMF and almost transgranular and small intergranular for TF and in-phase TMF.


2012 ◽  
Vol 20 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Sunao Takahashi ◽  
Mutsumi Sano ◽  
Atsuo Watanabe ◽  
Hideo Kitamura

Following a successful study on the prediction of fatigue life of high-heat-load components made of Glidcop, the thermal limitation of oxygen-free copper (OFC), which is used more commonly than Glidcop, has been studied. In addition to its general mechanical properties, the low-cycle-fatigue (LCF) and creep properties of OFC were investigated in detail and compared with those of Glidcop. The breaking mode of OFC, which was observed to be completely different from that of Glidcop in a fatigue fracture experiment, clarified the importance of considering the creep–fatigue interaction. An additional LCF test with compressive strain holding was conducted so that the creep–fatigue life diagram for out-of-phase thermal fatigue could be obtained on the basis of the strain-range partitioning method. The life predicted from elasto-plastic creep analysis agreed well with that determined from the void ratio estimated in the fatigue fracture experiment.


2018 ◽  
Vol 165 ◽  
pp. 15001 ◽  
Author(s):  
Robert Eriksson ◽  
Kjell Simonsson ◽  
Daniel Leidermark ◽  
Johan Moverare

Gas turbine disks contain many notch-like features acting as stress raisers. The fatigue life based on the notch root stress may be overly conservative as the steep stress gradient in front of the notch may give rise to so-called notch support. In the current work, the theory of critical distances was applied to the prediction of the total fatigue life of low cycle fatigued, notched specimens made from alloy 718. The fatigue tests were performed at 450 °C and 550 °C. It was found that, for lives shorter than 5000–10000 cycles, the notched specimens had longer lives than would have been expected based on the notch root strain. For lives longer than 5000–10000 cycles, there were no notch support. The life prediction for notched specimens could be significantly improved by basing the prediction on the strain chosen some distance from the notch (the critical distance). An expression for calculating the critical distance based on the notch root strain was suggested.


Author(s):  
Masanori Ando ◽  
Yuichi Hirose ◽  
Takanori Karato ◽  
Sota Watanabe ◽  
Osamu Inoue ◽  
...  

In a component design at elevated temperature, creep-fatigue is one of the most important failure modes, and assessment of creep-fatigue life in structural discontinuity is important issue to evaluate structural integrity of the components. Therefore a lot of creep-fatigue life evaluation methods were proposed until now. To compare and assess these evaluation methods, a series of creep-fatigue tests was carried out with notched specimens. All the specimens were made of Mod.9Cr-1Mo steel, which it is a candidate material for a primary and secondary heat transport system components of JSFR (Japan Sodium-cooled Fast Reactor). Mechanical creep-fatigue tests and thermal creep-fatigue tests were performed by using conventional uni-axial push-pull fatigue test machine and thermal gradient generating system with an induction heating coil. Stress concentration levels were adjusted by varying the diameters of notch roots in the both tests. In the test, creep-fatigue lives, crack initiation and propagation processes were observed by digital micro-scope and replica method. Besides those, a series of elastic Finite Element Analysis (FEA) were carried out to predict the number of cycles to failure by several creep-fatigue life evaluation methods. Then these predictions were compared with test results. Several types of evaluation methods which are stress redistribution locus (SRL) method, simple elastic follow-up method and the methods described in JSME FR (Fast Reactor) code were applied. The applicability and conservativeness of these methods were discussed. It was appeared that SRL method gave rational prediction of creep-fatigue life with conservativeness when the factor of κ = 1.6 was applied for all the conditions tested in this study. Comparison of SRL method and simple elastic follow-up method indicated that SRL method applied factor of κ = 1.6 gave the smallest creep-fatigue life in practicable stress level. JSME FR code gave an evaluation 70∼100 times conservative lives comparing with the test results.


2010 ◽  
Vol 97-101 ◽  
pp. 449-452
Author(s):  
Ping Zhao ◽  
Qing Hua He ◽  
Wei Li

A low cycle fatigue life (LCF) prediction model for nickel-based single crystal (SC) is presented based on the LCF experiments of notched specimens. Fatigue notch factor is adopted to reflect the influence of notch shape on LCF. Orientation function is adopted to modify total strain range and eliminate the influence of orientation on LCF. Cycle stress ratio is adopted to reflect the influence of mean stress and cycle character on LCF. The predicted results shows that all the data are in the factor of 2.1 scatter band, which means that the model proposed in this work is reasonable.


1992 ◽  
Vol 114 (3) ◽  
pp. 280-291 ◽  
Author(s):  
K. Tsukimori ◽  
T. Yamashita ◽  
M. Kikuchi ◽  
K. Iwata ◽  
A. Imazu

For the reliable operation of bellows under cyclic loadings at high temperatures, a rational evaluation method of life of bellows would be needed. Authors investigated simplified analysis methods for fatigue and creep-fatigue life prediction of U-shaped bellows considering inelasticity as well as various geometrical nonuniformity such as thickness and shape of convolutions. A conservative evaluation method of the strain range is developed, introducing three strain range amplification factors for nominal elastic strain range. Creep and relaxation behaviors of bellows are studied. Consequently, a new evaluation method of creep damage fractions is proposed which depends upon the relation between primary and secondary stresses. Fatigue and creep-fatigue tests are conducted and the validity of the present methods is discussed.


Author(s):  
Xiaojun Yan ◽  
Jingxu Nie

A new experimental method, in which a full scale directionally solidified (DS) alloy turbine blade is loaded by a special design rig employing friction force and heated by eddy current induction, is proposed to conduct creep-fatigue life tests in this investigation. The method can take factors such as geometry, volume, especially cast procedures, etc., into creep-fatigue life assessment. Principle and design of the test rig are fully explained. Creep-fatigue tests of turbine blades made of DZ4 alloy (one type of DS alloys) were conducted and test data were analyzed. Life prediction based on test data of this investigation shows good agreement with actual flight experience of these blades. The method of this article provides a new way to estimate the potential creep-fatigue or low cycle fatigue life for turbine blades.


1999 ◽  
Vol 122 (2) ◽  
pp. 186-191 ◽  
Author(s):  
Hisaaki Tobushi ◽  
Takafumi Nakahara ◽  
Yoshirou Shimeno ◽  
Takahiro Hashimoto

The low-cycle fatigue of a TiNi shape memory alloy was investigated by the rotating-bending fatigue tests in air, in water and in silicone oil. (1) The influence of corrosion fatigue in water does not appear in the region of low-cycle fatigue. (2) The temperature rise measured through an infrared thermograph during the fatigue test in air is four times as large as that measured through a thermocouple. (3) The fatigue life at an elevated temperature in air coincides with the fatigue life at the same elevated temperature in water. (4) The shape memory processing temperature does not affect the fatigue life. (5) The fatigue equation is proposed to describe the fatigue life depending on strain amplitude, temperature and frequency. The fatigue life is estimated well by the proposed equation. [S0094-4289(00)01102-6]


Sign in / Sign up

Export Citation Format

Share Document