Thermal Modeling and Analysis of a Thermal Barrier Coating Structure Using Non-Fourier Heat Conduction

2012 ◽  
Vol 134 (11) ◽  
Author(s):  
Stephen Akwaboa ◽  
Patrick Mensah ◽  
Ebubekir Beyazouglu ◽  
Ravinder Diwan

This paper presents a numerical solution of the hyperbolic heat conduction equation in a thermal barrier coating (TBC) structure under an imposed heat flux on the exterior of the TBC. The non-Fourier heat conduction equation is used to model the heat conduction in the TBC system that predicts the heat flux and the temperature distribution. This study presents a more realistic approach to evaluate in-service performance of thin layers of TBCs typically found in hot sections of land based and aircraft gas turbine engines. In such ultrafast heat conduction systems, the orders of magnitude of the time and space dimensions are extremely short which renders the traditional Fourier conduction law, with its implicit assumption of infinite speed of thermal propagation, inaccurate. There is, therefore, the need for an advanced modeling approach for the thermal transport phenomenon taking place in microscale systems. A hyperbolic heat conduction model can be used to predict accurately the transient temperature distribution of thermal barrier structures of turbine blades. The hyperbolic heat conduction equations are solved numerically using a new numerical scheme codenamed the mean value finite volume method (MVFVM). The numerical method yields minimal numerical dissipation and dispersion errors and captures the discontinuities such as the thermal wave front in the solution with reliable accuracy. Compared with some traditional numerical methods, the MVFVM method provides the ability to model the behavior of the single phase lag thermal wave following its reflection from domain boundary surfaces. In addition, parametric studies of properties of the substrate on the temperature and the heat flux distributions in the TBC revealed that relaxation time of the substrate material, unlike the thermal diffusivity and thermal conductivity has very little effect on the transient thermal response in the TBC. The study further showed that for thin film structures subject to short time durations of heat flux, the hyperbolic model yields more realistic results than the parabolic model.

Author(s):  
Siddharth Saurav ◽  
Sandip Mazumder

Abstract The Fourier heat conduction and the hyperbolic heat conduction equations were solved numerically to simulate a frequency-domain thermoreflectance (FDTR) experimental setup. Numerical solutions enable use of realistic boundary conditions, such as convective cooling from the various surfaces of the substrate and transducer. The equations were solved in time domain and the phase lag between the temperature at the center of the transducer and the modulated pump laser signal were computed for a modulation frequency range of 200 kHz to 200 MHz. It was found that the numerical predictions fit the experimentally measured phase lag better than analytical frequency-domain solutions of the Fourier heat equation based on Hankel transforms. The effects of boundary conditions were investigated and it was found that if the substrate (computational domain) is sufficiently large, the far-field boundary conditions have no effect on the computed phase lag. The interface conductance between the transducer and the substrate was also treated as a parameter, and was found to have some effect on the predicted thermal conductivity, but only in certain regimes. The hyperbolic heat conduction equation yielded identical results as the Fourier heat conduction equation for the particular case studied. The thermal conductivity value (best fit) for the silicon substrate considered in this study was found to be 108 W/m/K, which is slightly different from previously reported values for the same experimental data.


2003 ◽  
Author(s):  
Kal Renganathan Sharma

Mesoscopic approach deals with study that considers temporal fluctuations which is often averaged out in a macroscopic approach without going into the molecular or microscopic approach. Transient heat conduction cannot be fully described by Fourier representation. The non-Fourier effects or finite speed of heat propagation effect is accounted for by some investigators using the Cattaneo and Vernotte non-Fourier heat conduction equation: q=−k∂T/∂x−τr∂q/∂t(1) A generalized expression to account for the non-Fourier or thermal inertia effects suggested by Sharma (5) as: q=−k∂T/∂x−τr∂q/∂t−τr2/2!∂2q/∂t2−τr3/3!∂3q/∂t3−…(2) This was obtained by a Taylor series expansion in time domain. Manifestation of higher order terms in the modified Fourier’w law as periodicity in the time domain is considered in this study. When a CWT is maintained at one end of a medium of length L where L is the distance from the isothermal wall beyond which there is no appreciable temperature change from the initial condition during the duration of the study the transient temperature profile is obtained by the method of Laplace transforms. The space averaged heat flux is obtained and upon inversion from Laplace domain found to be a constant for the the case obeying Fourier’s law; 1 − exp(−τ) using the Cattaneo and Vernotte non-Fourier heat conduction equation, and upon introduction of the second derivative in time of the heat flux the expression becomes, 1 − exp(−τ)(Sin(τ) + Cos(τ)). Thus the periodicity in time domain is lost when the higher order terms in the generalized Fourier expression is neglected.


1990 ◽  
Vol 112 (3) ◽  
pp. 555-560 ◽  
Author(s):  
W. Kaminski

The physical meaning of the constant τ in Cattaneo and Vernotte’s equation for materials with a nonhomogeneous inner structure has been considered. An experimental determination of the constant τ has been proposed and some values for selected products have been given. The range of differences in the description of heat transfer by parabolic and hyperbolic heat conduction equations has been discussed. Penetration time, heat flux, and temperature profiles have been taken into account using data from the literature and our experimental and calculated results.


Author(s):  
Jianhua Zhou ◽  
J. K. Chen ◽  
Yuwen Zhang

To ensure personal safety and improve treatment efficiency in laser medical applications, one of the most important issues is to understand and accurately assess laser-induced thermal damage to biological tissues. Biological tissues generally consist of nonhomogeneous inner structures, in which heat flux equilibrates to the imposed temperature gradient via a thermal relaxation mechanism which cannot be explained by the traditional parabolic heat conduction model based on Fourier’s law. In this article, two non-Fourier heat conduction models, hyperbolic thermal wave model and dual-phase-lag (DPL) model, are formulated to describe the heat transfer in living biological tissues with blood perfusion and metabolic heat generation. It is shown that the non-Fourier bioheat conduction models could predict significantly different temperature and thermal damage in tissues from the traditional parabolic model. It is also found that the DPL bioheat conduction equations can be reduced to the Fourier heat conduction equations only if both phase lag times of the temperature gradient (τT) and the heat flux (τq) are zero. Effects of laser parameters and blood perfusion on the thermal damage simulated in tissues are also studied. The result shows that the overall effects of the blood flow on the thermal response and damage are similar to those of the time delay τT. The two-dimensional numerical results indicate that for a local heating with the heated spot being smaller than the tissue bulk, the variations of the non-uniform distributions of temperature suggest that the multi-dimensional effects of thermal wave and diffusion not be negligible.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Ryan N. O'Donnell ◽  
Thomas R. Powell ◽  
Zoran S. Filipi ◽  
Mark A. Hoffman

A modified form of the sequential function specification method (SFSM) is developed with specific consideration given to multiple time scales in an effort to avoid overregularization of the solution estimates. The authors extend their approach to solve the inverse heat conduction problem (IHCP) associated with the application of thermal barrier coatings (TBC) to in-cylinder surfaces of an internal combustion engine. Subsurface temperature measurements are used to calculate surface heat flux profiles. The modified inverse solver is validated ex situ using a custom fabricated radiation chamber. The solution methodology is extended in situ to evaluate temperature data collected from a single-cylinder research engine operating in homogeneous charge compression ignition (HCCI) mode. Crank angle resolved, thermal barrier coating surface temperature and heat flux profiles are produced—enabling correlation of thermal conditions at the gas-wall boundary with engine performance, emission, and efficiency metrics.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2044
Author(s):  
Sean Moser ◽  
K. Dean Edwards ◽  
Tobias Schoeffler ◽  
Zoran Filipi

Thermal barrier coatings (TBCs) have been investigated both experimentally and through simulation for mixing controlled combustion (MCC) concepts as a method for reducing heat transfer losses and increasing cycle efficiency, but it is still a very active research area. Early studies were inconclusive, with different groups discovering obstacles to realizing the theoretical potential. Nuanced papers have shown that coating material properties, thickness, microstructure, and surface morphology/roughness all can impact the efficacy of the thermal barrier coating and must be accounted for. Adding to the complexities, a strong spatial and temporal heat flux inhomogeneity exists for mixing controlled combustion (diesel) imposed onto the surfaces from the impinging flame jets. In support of the United States Department of Energy SuperTruck II program goal to achieve 55% brake thermal efficiency on a heavy-duty diesel engines, this study sought to develop a deeper insight into the inhomogeneous heat flux from mixing controlled combustion on thermal barrier coatings and to infer concrete guidance for designing coatings. To that end, a co-simulation approach was developed that couples high-fidelity computational fluid dynamics (CFD) modeling of in-cylinder processes and combustion, and finite element analysis (FEA) modeling of the thermal barrier-coated and metal engine components to resolve spatial and temporal thermal boundary conditions. The models interface at the surface of the combustion chamber; FEA modeling predicts the spatially resolved surface temperature profile, while CFD develops insights into the effect of the thermal barrier coating on the combustion process and the boundary conditions on the gas side. The paper demonstrates the capability of the framework to estimate cycle impacts of the temperature swing at the surface, as well as identify critical locations on the piston/thermal barrier coating that exhibit the highest charge temperature and highest heat fluxes. In addition, the FEA results include predictions of thermal stresses, thus enabling insight into factors affecting coating durability. An example of the capability of the framework is provided to illustrate its use for investigating novel coatings and provide deeper insights to guide future coating design.


Author(s):  
E Izadpanah ◽  
S Talebi ◽  
M H Hekmat

The non-Fourier effects on transient and steady temperature distribution in combined heat transfer are studied. The processes of coupled conduction and radiation heat transfer in grey, absorbing, emitting, scattering, one-dimensional medium with black boundary surfaces are analysed numerically. The hyperbolic heat conduction equation is solved by flux splitting method, and the radiative transfer equation is solved by P1 approximate method. The transient thermal responses obtained from non-Fourier heat conduction equation are compared with those obtained from the Fourier heat conduction equation. The results show that the non-Fourier effect can be important when the conduction to radiation parameter and the thermal relaxation time are larger. Further, the radiation effect is more pronounced at small values of single scattering albedo and conduction to radiation parameters. Analysis results indicate that the internal radiation in the medium significantly influences the wave nature.


1983 ◽  
Vol 105 (4) ◽  
pp. 902-907 ◽  
Author(s):  
B. Vick ◽  
M. N. O¨zisik

The wave nature of heat propagation in a semi-infinite medium containing volumetric energy sources is investigated by solving the hyperbolic heat conduction equation. Analytic expressions are developed for the temperature and heat flux distributions. The solutions reveal that the spontaneous release of a finite pulse of energy gives rise to a thermal wave front which travels through the medium at a finite velocity, decaying exponentially while dissipating its energy along its path. When a concentrated pulse of energy is released, the temperature and heat flux in the wave front become severe. For situations involving very short times or very low temperatures, the classical heat diffusion theory significantly underestimates the magnitude of the temperature and heat flux in this thermal front, since the classical theory leads to instantaneous heat diffusion at an infinite propagation velocity.


Sign in / Sign up

Export Citation Format

Share Document