Measurement Versus Predictions of Rotordynamic Coefficients of a Hole-Pattern Gas Seal With Negative Preswirl

Author(s):  
Philip D. Brown ◽  
Dara W. Childs

Test results are presented for the rotordynamic coefficients of a hole-pattern annular gas seal at supply pressures to 84 bar and running speeds to 20200 rpm. The principal test variable of interest was negative preswirl. Preswirl signifies the circumferential fluid flow entering a seal and negative preswirl indicates a fluid swirl in a direction opposite to rotor rotation. The influences of the pressure ratio and rotor speed were also investigated. The measured results produce direct and cross-coupled stiffness and damping coefficients that are a function of the excitation frequency Ω. Changes in the pressure ratio had only small effects on most rotordynamic coefficients. Cross-coupled stiffness showed slightly different profiles through the midrange of Ω values. Increasing rotor speed significantly increased the cross-coupled stiffness and cross-coupled damping. At 10,200 RPM, high negative inlet preswirl produced negative cross-coupled stiffness over an excitation frequency range of 200–250 Hz. Negative preswirl did not affect the direct stiffness and damping coefficients. Effective damping combines the stabilizing effect of direct damping and the destabilizing effect of cross-coupled stiffness. The crossover frequency is the precession frequency where effective damping transitions from a negative value to a positive value with increasing frequency. At 20,200 rpm with a pressure ratio of 50%, the peak effective damping was increased by 50%, and the crossover frequency was reduced by 50% for high-negative preswirl versus zero preswirl. Hence, reverse swirl can greatly enhance the stabilizing capacity of a hole-pattern balance-piston or division-wall seals for compressors. A two-control-volume model that uses the ideal gas law at constant temperature was used to predict rotordynamic coefficients. The model predicted direct rotordynamic coefficients well, however, substantially under-predicted cross-coupled rotordynamic coefficients, especially at high negative preswirls.

Author(s):  
Philip D. Brown ◽  
Dara W. Childs

Test results are presented for rotordynamic coefficients of a hole-pattern annular gas seals at supply pressures to 84 bar and running speeds to 20,200 RPM. The principal test variable of interest was negative preswirl. Preswirl signifies the circumferential fluid flow entering a seal, and negative preswirl indicates a fluid swirl in a direction opposite to rotor rotation. The influences of pressure ratio and rotor speed were also investigated. Measured results produce direct and cross-coupled stiffness and damping coefficients that are a function of excitation frequency Ω. Changes in pressure ratio had only small effects on most rotordynamic coefficients. Cross-coupled stiffness showed slightly different profiles through the mid-range of Ω values. Increasing rotor speed significantly increased cross-coupled stiffness and cross-coupled damping. At 10,200 RPM, high negative inlet preswirl produced negative cross-coupled stiffness over an excitation frequency range of 200–250 Hz. Negative preswirl did not affect direct stiffness and damping coefficients. Effective damping combines the stabilizing effect of direct damping and the destabilizing effect of cross-coupled stiffness. The cross-over frequency is the precession frequency where effective damping transitions from a negative value to a positive value with increasing frequency. At 20,200 RPM with a pressure ratio of 50%, peak effective damping was increased by 50%, and the cross-over frequency was reduced by 50% for high-negative preswirl versus zero preswirl. Hence, reverse swirl can greatly enhance the stabilizing capacity of hole-pattern balance-piston or division-wall seals for compressors. A two-control-volume model that uses the ideal gas law at constant temperature was used to predict rotordynamic coefficients. The model predicted direct rotordynamic coefficients well, but substantially under predicted cross-coupled rotordynamic coefficients especially at high negative preswirls.


Author(s):  
Yoon-Shik Shin ◽  
Dara W. Childs

Predictions are presented for an annular gas seal that is representative of the division-wall seal of a back-to-back compressor or the balance-piston seal of an in-line compressor. A 2-control-volume bulk-flow model is used including the axial and circumferential momentum equations and the continuity equations. The basic model uses a constant temperature prediction (ISOT) and an ideal gas law as an equation of state. Two variations are used: adding the energy equation with an ideal gas law (IDEAL), and adding the energy equation with real gas properties (REAL). The energy equations assume adiabatic flow. The ISOT model has been used for prior calculations. Concerning predictions of static characteristics, the calculated mass leakage rate was, respectively, 9.46, 9.55 and 7.87 kg/s for ISOT, IDEAL, and REAL. For rotordynamic coefficients, predicted effective stiffness coefficients are comparable for the models at low excitation frequencies. At running speed, REAL predictions are roughly 40% lower than ISOT, which could results in lower predicted critical speeds. Predicted effective damping coefficients are also generally comparable. REAL and IDEAL predictions for the cross-over frequency is approximately 20% lower than ISOT. REAL predictions for effective damping are modestly lower in the frequency range of 40 to 50% of running speed where higher damping values are desired.


Author(s):  
Joseph M. Pelletti ◽  
Dara W. Childs

Abstract Experimental results for the rotordynamic coefficients of short (L/D = 1/6) teeth-on-stator and teeth-on-rotor labyrinth seals are presented. The effects that pressure ratio (fluid density), rotor speed, fluid pre-swirl and seal clearance have on these coefficients are studied. Tests were run out to speeds of 16000 rpm with a supply pressure of 17.3 bar and seal clearances ranging from 0.229–0.419 mm. The experimental results are compared with theoretical predictions of a two control volume compressible flow model. The experimental results show that decreases in pressure ratio and increases in rotor speed are stabilizing while increases in fluid pre-swirl and seal clearance are destabilizing for both seal configurations. The theoretical model correctly predicts the effects of pressure ratio, rotor speed and fluid pre-swirl on the cross-coupled stiffness. It also predicts reasonable values for direct damping for all test conditions. However, the theory incorrectly predicts the effect of seal clearance on these coefficients. Consequently the theoretical predictions are much better for the large clearance seals.


Author(s):  
Alexander O. Pugachev ◽  
Clemens Griebel ◽  
Stacie Tibos ◽  
Bernard Charnley

In this paper, a hybrid brush pocket damper seal is studied theoretically using computational fluid dynamics. In the hybrid sealing arrangement, the brush seal element with cold clearance is placed downstream of a 4-bladed, 8-pocket, fully partitioned pocket damper seal. The new seal geometry is derived based on designs of short brush-labyrinth seals studied in previous works. Transient CFD simulations coupled with the multi-frequency rotor excitation method are performed to determine frequency-dependent stiffness and damping coefficients of pocket damper seals. A moving mesh technique is applied to model the shaft motion on a predefined whirling orbit. The rotordynamic coefficients are calculated from impedances obtained in frequency domain. The pocket damper seal CFD model is validated against available experimental and numerical results found in the literature. Bristle pack in the brush seal CFD model is described as porous medium. The applied brush seal model is validated using the measurements obtained in previous works from two test rigs. Predicted leakage characteristics as well as stiffness and damping coefficients of the hybrid brush pocket damper seal are presented for different operating conditions. In this case, the rotordynamic coefficients are calculated using a single-frequency transient simulation. By adding the brush seal, direct stiffness is predicted to be significantly decreased while effective damping shows a more moderate or no reduction depending on excitation frequency. Effective clearance results indicate more than halved leakage compared to the case without brush seal.


Author(s):  
Jason C. Wilkes ◽  
Dara W. Childs

For several years, researchers have presented predictions showing that using a full tilting-pad journal bearing (TPJB) model (retaining all of the pad degrees of freedom) is necessary to accurately perform stability calculations for a shaft operating on TPJBs. This paper will discuss this issue, discuss the importance of pad and pivot flexibility in predicting impedance coefficients for the tilting-pad journal bearing, present measured changes in bearing clearance with operating temperature, and summarize the differences between measured and predicted frequency dependence of dynamic impedance coefficients. The current work presents recent test data for a 100 mm (4 in) five-pad TPJB tested in load on pad (LOP) configuration. Measured results include bearing clearance as a function of operating temperature, pad clearance and radial displacement of the loaded pad (the pad having the static load vector directed through its pivot), and frequency dependent stiffness and damping. Measured hot bearing clearances are approximately 30% smaller than measured cold bearing clearances and are inversely proportional to pad surface temperature; predicting bearing impedances with a rigid pad and pivot model using these reduced clearances results in overpredicted stiffness and damping coefficients that are several times larger than previous comparisons. The effect of employing a full bearing model versus a reduced bearing model (where only journal degrees of freedom are retained) in a stability calculation for a realistic rotor-bearing system is assessed. For the bearing tested, the bearing coefficients reduced at the frequency of the unstable eigenvalue (subsynchronously reduced) predicted a destabilizing cross-coupled stiffness coefficient at the onset of instability within 1% of the full model, while synchronously reduced coefficients for the lightly loaded bearing required 25% more destabilizing cross-coupled stiffness than the full model to cause system instability. The same stability calculation was performed using measured stiffness and damping coefficients at synchronous and subsynchronous frequencies. These predictions showed that both the synchronously measured stiffness and damping and predictions using the full bearing model were more conservative than the model using subsynchronously measured stiffness and damping, an outcome that is completely opposite from conclusions reached by comparing different prediction models. This contrasting outcome results from a predicted increase in damping with increasing excitation frequency at all speeds and loads; however, this increase in damping with increasing excitation frequency was only measured at the most heavily loaded conditions.


Author(s):  
Alexander O. Pugachev ◽  
Manuel Gaszner ◽  
Christos Georgakis ◽  
Paul Cooper

This paper studies the effect of brush seal segmentation on the seal performance characteristics. A brush-labyrinth sealing configuration arranged of one brush seal downstream and two labyrinth fins upstream is studied experimentally and theoretically. The studied brush seal is of welded design installed with zero cold radial clearance. The brush seal front and back rings as well as the bristle pack are segmented radially in a single plane using the electrical discharge machining technique. The segmentation procedure results in loss of bristles at the site of the cuts altering the leakage flow structure in the seal and its performance characteristics. Two test rigs are used to obtain leakage, as well as rotordynamic stiffness and damping coefficients of the seal at different pressure ratios. The CFD-based model is used to predict the seal performance and to study in detail local changes in the flow field due to the segmentation. A back-to-back comparison of the performance of non-segmented and segmented brush seals, as well as baseline labyrinth seal is provided. The obtained results demonstrate that the segmentation in general negatively affects the performance of the studied brush-labyrinth sealing configuration. However, the segmented brush seal shows increased direct damping coefficients.


Author(s):  
Dara W. Childs ◽  
David A. Elrod ◽  
Keith Hale

Test results (leakage and rotordynamic coefficients) are presented for an interlock and tooth-on-stator labyrinth seals. Tests were carried out with air at speeds out to 16,000 cpm and supply pressures up to 7.5 bars. The rotordynamic coefficients consist of direct and cross-coupled stiffness and damping coefficients. Damping-coefficient data have not previously been presented for interlock seals. The test results support the following conclusions: (a) The interlock seal leaks substantially less than labyrinth seals. (b) Destabilizing forces are lower for the interlock seal. (c) The labyrinth seal has substantially greater direct damping values than the interlock seal. A complete rotordynamics analysis is needed to determine which type of seal would yield the best stability predictions for a given turbomachinery unit.


1999 ◽  
Vol 122 (1) ◽  
pp. 317-322 ◽  
Author(s):  
Jiming Li ◽  
Ramon Aguilar ◽  
Luis San Andre´s ◽  
John M. Vance

Experimental rotordynamic force coefficients and leakage for a four-blade, two-four pocket gas damper seal are presented and compared to predictions based on a one control volume bulk-flow model. The test rig comprises a vertical shaft and a test seal housing and flexible structure suspended from a rigid centering frame. The experiments were conducted at increasing rotor speeds to 6000 rpm and inlet/exit pressure ratios from 1.0 to 3.0. The seal force coefficients are obtained from impact response measurements of the seal and flexible structure using a frequency domain parameter identification technique. Both measurements and predictions show the seal direct stiffness and damping coefficients are proportional to the inlet/exit pressure ratio and insensitive to rotor speed. The agreement between experimental results and analytical predictions is acceptable. Predicted cross-coupled stiffness coefficients are of small amplitude. However, the test results evidence cross-coupled stiffnesses without journal rotation due to a structural asymmetry induced by the external pressurization into the seal. [S0742-4787(00)04201-6]


Author(s):  
Luis San Andrés ◽  
Joshua Norsworthy

High speed rotors supported on bump-type foil bearings (BFBs) often suffer from large subsynchronous whirl motions. Mechanically preloading BFBs through shimming is a common, low cost practice that shows improvements in rotordynamic stability. However, there is an absence of empirical information related to the force coefficients (structural and rotordynamic) of shimmed BFBs. This paper details a concerted study toward assessing the effect of shimming on a first generation BFB (L = 38.1 mm and D = 36.5 mm). Three metal shims, 120 deg apart, are glued to the inner surface of the bearing cartridge and facing the underside of the bump foil strip. The shim sets are of identical thickness, either 30 μm or 50 μm. In static load tests, a bearing with shims shows a (nonlinear) structural stiffness larger than for the bearing without shims. Torque measurements during shaft acceleration also demonstrate a shimmed BFB has a larger friction coefficient. For a static load of 14.3 kPa, dynamic loads with a frequency sweep from 250 Hz to 450 Hz are exerted on the BFB, without and with shims, to estimate its rotordynamic force coefficients while operating at ∼50 krpm (833 Hz). Similar measurements are conducted without shaft rotation. Results are presented for the original BFB (without shims) and the two shimmed BFB configurations. The direct stiffnesses of the BFB, shimmed or not, increase with excitation frequency, thus evidencing a mild hardening effect. The BFB stiffness and damping coefficients decrease slightly for operation with rotor speed as opposed to the coefficients when the shaft is stationary. For frequencies above 300 Hz, the direct damping coefficients of the BFB with 50 μm thick shims are ∼30% larger than the coefficients of the original bearing. The bearing structural loss factor, a measure of its ability to dissipate mechanical energy, is derived from the direct stiffness and damping coefficients. The BFB with 50 μm thick shims has a 25% larger loss factor—average from test data collected at 300 Hz to 400 Hz—than the original BFB. Further measurements of rotor motions while the shaft accelerates to ∼50 krpm demonstrate the shimmed BFB (thickest shim set) effectively removes subsynchronous whirl motions amplitudes that were conspicuous when operating with the original bearing.


Author(s):  
Luis San Andrés ◽  
Thomas Abraham Chirathadam ◽  
Tae-Ho Kim

Engineered metal mesh foil bearings (MMFBs) are a promising low cost bearing technology for oil-free microturbomachinery. In a MMFB, a ring shaped metal mesh provides a soft elastic support to a smooth arcuate foil wrapped around a rotating shaft. This paper details the construction of a MMFB and the static and dynamic load tests conducted on the bearing for estimation of its structural stiffness and equivalent viscous damping. The 28.00 mm diameter 28.05 mm long bearing, with a metal mesh ring made of 0.3 mm copper wire and compactness of 20%, is installed on a test shaft with a slight preload. Static load versus bearing deflection measurements display a cubic nonlinearity with large hysteresis. The bearing deflection varies linearly during loading, but nonlinearly during the unloading process. An electromagnetic shaker applies on the test bearing loads of controlled amplitude over a frequency range. In the frequency domain, the ratio of applied force to bearing deflection gives the bearing mechanical impedance, whose real part and imaginary part give the structural stiffness and damping coefficients, respectively. As with prior art published in the literature, the bearing stiffness decreases significantly with the amplitude of motion and shows a gradual increasing trend with frequency. The bearing equivalent viscous damping is inversely proportional to the excitation frequency and motion amplitude. Hence, it is best to describe the mechanical energy dissipation characteristics of the MMFB with a structural loss factor (material damping). The experimental results show a loss factor as high as 0.7 though dependent on the amplitude of motion. Empirically based formulas, originally developed for metal mesh rings, predict bearing structural stiffness and damping coefficients that agree well with the experimentally estimated parameters. Note, however, that the metal mesh ring, after continuous operation and various dismantling and re-assembly processes, showed significant creep or sag that resulted in a gradual decrease in its structural force coefficients.


Sign in / Sign up

Export Citation Format

Share Document