Study of Fuel Composition Effects on Flashback Using a Confined Jet Flame Burner

Author(s):  
Brendan Shaffer ◽  
Zhixuan Duan ◽  
Vincent McDonell

Flashback is the main operability issue associated with converting lean, premixed combustion systems from operation on natural gas to operation on high hydrogen content fuels. Most syngas fuels contain some amount of hydrogen (15–100%) depending on the fuel processing scheme. With this variability in the composition of syngas, the question of how fuel composition impacts flashback propensity arises. To address this question, a jet burner configuration was used to develop systematic data for a wide range of compositions under turbulent flow conditions. The burner consisted of a quartz burner tube confined by a larger quartz tube. The use of quartz allowed visualization of the flashback processes occurring. Various fuel compositions of hydrogen, carbon monoxide, and natural gas were premixed with air at equivalence ratios corresponding to constant adiabatic flame temperatures (AFT) of 1700 K and 1900 K. Once a flame was stabilized on the burner, the air flow rate would be gradually reduced while holding the AFT constant via the equivalence ratio until flashback occurred. Schlieren and intensified OH* images captured at high speeds during flashback allowed some additional understanding of what is occurring during the highly dynamic process of flashback. Confined and unconfined flashback data were analyzed by comparing data collected in the present study with existing data in the literature. A statistically designed test matrix was used which allows analysis of variance of the results to be carried out, leading to correlation between fuel composition and flame temperature with (1) critical flashback velocity gradient and (2) burner tip temperature. Using the burner tip temperature as the unburned temperature in the laminar flame speed calculations showed increased correlation of the flashback data and laminar flame speed as opposed to when the actual unburned gas temperature was used.

Author(s):  
Brendan Shaffer ◽  
Zhixuan Duan ◽  
Vincent McDonell

Flashback is the main operability issue associated with converting lean, premixed combustion systems from operation on natural gas to operation on high hydrogen content fuels. Most syngas fuels contain some amount of hydrogen (15–100%) depending on the fuel processing scheme. With this variability in the composition of syngas, the question of how fuel composition impacts flashback propensity arises. To address this question, a jet burner configuration was used to develop systematic data for a wide range of compositions under turbulent flow conditions. The burner consisted of a quartz burner tube confined by a larger quartz tube. The use of quartz allowed visualization of the flashback processes occurring. Various fuel compositions of hydrogen, carbon monoxide, and natural gas were premixed with air at equivalence ratios corresponding to constant adiabatic flame temperatures (AFT) of 1700 K and 1900 K. Once a flame was stabilized on the burner, the air flow rate would be gradually reduced while holding the AFT constant via the equivalence ratio until flashback occurred. Schlieren and intensified OH* images captured at high speeds during flashback allowed some additional understanding of what is occurring during the highly dynamic process of flashback. Confined and unconfined flashback data were analyzed by comparing data collected in the present study with existing data in the literature. A statistically designed test matrix was used which allows analysis of variance of the results to be carried out, leading to correlation between fuel composition and flame temperature with (1) critical flashback velocity gradient and (2) burner tip temperature. Using the burner tip temperature as the unburned temperature in the laminar flame speed calculations showed increased correlation of the flashback data and laminar flame speed as opposed to when the actual unburned gas temperature was used.


Author(s):  
Zhixuan Duan ◽  
Brendan Shaffer ◽  
Vincent McDonell

Flashback is a key challenge for low NOx premixed combustion of high hydrogen content fuels. Previous work has systematically investigated the impact of fuel composition on flashback propensity, and noted that burner tip temperature played an important role on flashback, yet did not quantify any specific effect. The present work further investigates the coupling of flashback with burner tip temperature and leads to models for flashback propensity as a function of parameters studied. To achieve this, a jet burner configuration with interchangeable burner materials was developed along with automated flashback detection and rim temperature monitoring. An inline heater provides preheated air up to 810 K. Key observations include that for a given condition, tip temperature of a quartz burner at flashback is higher than that of a stainless burner. As a reasult, the flashback propensity of a quartz tube is about double of that of a stainless tube. A polynomial model based on analysis of variance is presented and shows that, if the tip temperature is introduced as a parameter, better correlations result. A physical model is developed and illustates that the critical velocity gradient is proportional to the laminar flame speed computed using the measured tip temperature. Addition of multiple parameters further refined the prediction of the flashback propensity, and the effects of materials are discussed qualitatively using a simple heat transfer analysis.


Author(s):  
Pablo Diaz Gomez Maqueo ◽  
Philippe Versailles ◽  
Gilles Bourque ◽  
Jeffrey M. Bergthorson

This study investigates the increase in methane and biogas flame reactivity enabled by the addition of syngas produced through fuel reforming. To isolate thermodynamic and chemical effects on the reactivity of the mixture, the burner simulations are performed with a constant adiabatic flame temperature of 1800 K. Compositions and temperatures are calculated with the chemical equilibrium solver of CANTERA® and the reactivity of the mixture is quantified using the adiabatic, freely-propagating premixed flame, and perfectly-stirred reactors of the CHEMKIN-Pro® software package. The results show that the produced syngas has a content of up to 30 % H2 with a temperature up to 950 K. When added to the fuel, it increases the laminar flame speed while maintaining a burning temperature of 1800 K. Even when cooled to 300 K, the laminar flame speed increases up to 30 % from the baseline of pure biogas. Hence, a system can be developed that controls and improves biogas flame stability under low reactivity conditions by varying the fraction of added syngas to the mixture. This motivates future experimental work on reforming technologies coupled with gas turbine exhausts to validate this numerical work.


2017 ◽  
Vol 18 (9) ◽  
pp. 951-970 ◽  
Author(s):  
Riccardo Amirante ◽  
Elia Distaso ◽  
Paolo Tamburrano ◽  
Rolf D Reitz

The laminar flame speed plays an important role in spark-ignition engines, as well as in many other combustion applications, such as in designing burners and predicting explosions. For this reason, it has been object of extensive research. Analytical correlations that allow it to be calculated have been developed and are used in engine simulations. They are usually preferred to detailed chemical kinetic models for saving computational time. Therefore, an accurate as possible formulation for such expressions is needed for successful simulations. However, many previous empirical correlations have been based on a limited set of experimental measurements, which have been often carried out over a limited range of operating conditions. Thus, it can result in low accuracy and usability. In this study, measurements of laminar flame speeds obtained by several workers are collected, compared and critically analyzed with the aim to develop more accurate empirical correlations for laminar flame speeds as a function of equivalence ratio and unburned mixture temperature and pressure over a wide range of operating conditions, namely [Formula: see text], [Formula: see text] and [Formula: see text]. The purpose is to provide simple and workable expressions for modeling the laminar flame speed of practical fuels used in spark-ignition engines. Pure compounds, such as methane and propane and binary mixtures of methane/ethane and methane/propane, as well as more complex fuels including natural gas and gasoline, are considered. A comparison with available empirical correlations in the literature is also provided.


Author(s):  
Shane Coogan ◽  
Xiang Gao ◽  
Aaron McClung ◽  
Wenting Sun

Existing kinetic mechanisms for natural gas combustion are not validated under supercritical oxy-fuel conditions because of the lack of experimental validation data. Our studies show that different mechanisms have different predictions under supercritical oxy-fuel conditions. Therefore, preliminary designers may experience difficulties when selecting a mechanism for a numerical model. This paper evaluates the performance of existing chemical kinetic mechanisms and produces a reduced mechanism for preliminary designers based on the results of the evaluation. Specifically, the mechanisms considered were GRI-Mech 3.0, USC-II, San Diego 204-10-04, NUIG-I, and NUIG-III. The set of mechanisms was modeled in Cantera and compared against the literature data closest to the application range. The high pressure data set included autoignition delay time in nitrogen and argon diluents up to 85 atm and laminar flame speed in helium diluent up to 60 atm. The high carbon dioxide data set included laminar flame speed with 70% carbon dioxide diluent and the carbon monoxide species profile in an isothermal reactor with up to 95% carbon dioxide diluent. All mechanisms performed adequately against at least one dataset. Among the evaluated mechanisms, USC-II has the best overall performance and is preferred over the other mechanisms for use in the preliminary design of supercritical oxy-combustors. This is a significant distinction; USC-II predicts slower kinetics than GRI-Mech 3.0 and San Diego 2014 at the combustor conditions expected in a recompression cycle. Finally, the global pathway selection method was used to reduce the USC-II model from 111 species, 784 reactions to a 27 species, 150 reactions mechanism. Performance of the reduced mechanism was verified against USC-II over the range relevant for high inlet temperature supercritical oxy-combustion.


Author(s):  
Daniel Pugh ◽  
Philip Bowen ◽  
Andrew Crayford ◽  
Richard Marsh ◽  
Jon Runyon ◽  
...  

It has become increasingly cost-effective for the steel industry to invest in the capture of heavily carbonaceous BOF (Basic Oxygen Furnace) or converter gas, and use it to support the intensive energy demands of the integrated facility, or for surplus energy conversion in power plants. As industry strives for greater efficiency via ever more complex technologies, increased attention is being paid to investigate the complex behavior of by-product syngases. Recent studies have described and evidenced the enhancement of fundamental combustion parameters such as laminar flame speed due to the catalytic influence of H2O on heavily carbonaceous syngas mixtures. Direct formation of CO2 from CO is slow due to its high activation energy, and the presence of disassociated radical hydrogen facilitates chain branching species (such as OH), changing the dominant path for oxidation. The observed catalytic effect is non-monotonic, with the reduction in flame temperature eventually prevailing, and overall reaction rate quenched. The potential benefits of changes in water loading are explored in terms of delayed lean blowoff, and primary emission reduction in a premixed turbulent swirling flame, scaled for practical relevance at conditions of elevated temperature (423 K) and pressure (0.1–0.3 MPa). Chemical kinetic models are used initially to characterize the influence that H2O has on the burning characteristics of the fuel blend employed, modelling laminar flame speed and extinction strain rate across an experimental range with H2O vapor fraction increased to eventually diminish the catalytic effect. These modelled predictions are used as a foundation to investigate the experimental flame. OH* chemiluminescence and OH planar laser induced fluorescence (PLIF) are employed as optical diagnostic techniques to analyze changes in heat release structure resulting from the experimental variation in water loading. A comparison is made with a CH4/air flame and changes in lean blow off stability limits are quantified, measuring the incremental increase in air flow and again compared against chemical models. The compound benefit of CO and NOx reduction is quantified also, with production first decreasing due to the thermal effect of H2O addition from a reduction in flame temperature, coupled with the potential for further reduction from the change in lean stability limit. Power law correlations have been derived for change in pressure, and equivalent water loading. Hence, the catalytic effect of H2O on reaction pathways and reaction rate predicted and observed for laminar flames, are compared against the challenging environment of turbulent, swirl-stabilized flames at elevated temperature and pressure, characteristic of piratical systems.


2021 ◽  
Author(s):  
Jinlong Liu ◽  
Christopher Ulishney ◽  
Cosmin E. Dumitrescu

Abstract Increasing the natural gas (NG) use in heavy-duty engines is beneficial for reducing greenhouse-gas emissions from power generation and transportation. However, converting compression ignition (CI) engines to NG spark ignition operation can increase methane emissions without expensive aftertreatment, thereby defeating the purpose of utilizing a low carbon fuel. The widely accepted explanation for the low combustion efficiency in such retrofitted engines is the lower laminar flame speed of natural gas. In addition, diesel engine’s larger bowl size compared to the traditional gasoline engines increases the flame travel length inside the chamber and extends the combustion duration. However, optical measurements performed in this study suggested that a fast-propagating flame was developed inside the cylinder even at extremely lean operation. This was supported by a three-dimensional numerical simulation, which indicated that the squish region of the bowl-in-piston chamber generated a high turbulence intensity inside the bowl. However, the flame propagation experienced a sudden 2.25x reduction in speed when transiting from the bowl to the squish region. Such a phenomenon was caused by the large decrease in the turbulence intensity inside the squish region during the combustion process. Moreover, the squish volume trapped an important fuel fraction, and it is this fraction that experienced a slow and inefficient burning process during the expansion stroke. This resulted in increased methane emissions and reduced combustion efficiency. Overall, it was the specifics of the combustion process inside a bowl-in-piston chamber not the methane’s slow laminar flame speed that contributed to the low methane combustion efficiency for the retrofitted engine. The results suggest that optimizing the chamber shape is paramount to boost engine efficiency and decrease its emissions.


Author(s):  
William Lowry ◽  
Jaap de Vries ◽  
Michael Krejci ◽  
Eric Petersen ◽  
Zeynep Serinyel ◽  
...  

Alkanes such as methane, ethane, and propane make up a large portion of most natural gas fuels. Natural gas is the primary fuel used in industrial gas turbines for power generation. Because of this, a fundamental understanding of the physical characteristics such as the laminar flame speed is necessary. Most importantly, this information is needed at elevated pressures to have the most relevance to the gas turbine industry for engine design. This study includes experiments performed at elevated pressures, up to 10 atm initial pressure, and investigates the fuels in a pure form as well as in binary blends. Flame speed modeling was done using an improved version of the kinetics model that the authors have been developing over the past few years. Modeling was performed for a wide range of conditions, including elevated pressures. Experimental conditions include pure methane, pure ethane, 80/20 mixtures of methane/ethane, and 60/40 mixtures of methane/ethane at initial pressures of 1 atm, 5 atm, and 10 atm. Also included in this study are pure propane and 80/20 methane/propane mixtures at 1 atm and 5 atm. The laminar flame speed and Markstein length measurements were obtained from a high-pressure flame speed facility using a constant-volume vessel. The facility includes optical access, a high-speed camera, a schlieren optical setup, a mixing manifold, and an isolated control room. The experiments were performed at room temperature, and the resulting images were analyzed using linear regression. The experimental and modeling results are presented and compared with previously published data. The data herein agree well with the published data. In addition, a hybrid correlation was created to perform a rigorous uncertainty analysis. This correlation gives the total uncertainty of the experiment with respect to the true value rather than reporting the standard deviation of a repeated experiment. Included in the data set are high-pressure results at conditions where in many cases for the single-component fuels few data existed and for the binary blends no data existed prior to this study. Overall, the agreement between the model and data is excellent.


Author(s):  
Michael C. Krejci ◽  
Olivier Mathieu ◽  
Andrew J. Vissotski ◽  
Sankaranarayanan Ravi ◽  
Travis G. Sikes ◽  
...  

Laminar flame speeds and ignition delay times have been measured for hydrogen and various compositions of H2/CO (syngas) at elevated pressures and elevated temperatures. Two constant-volume cylindrical vessels were used to visualize the spherical growth of the flame through the use of a schlieren optical setup to measure the laminar flame speed of the mixture. Hydrogen experiments were performed at initial pressures up to 10 atm and initial temperatures up to 443 K. A syngas composition of 50/50 by volume was chosen to demonstrate the effect of carbon monoxide on H2-O2 chemical kinetics at standard temperature and pressures up to 10 atm. All atmospheric mixtures were diluted with standard air, while all elevated-pressure experiments were diluted with a He:O2 ratio of 7:1 to minimize instabilities. The laminar flame speed measurements of hydrogen and syngas are compared to available literature data over a wide range of equivalence ratios, where good agreement can be seen with several data sets. Additionally, an improved chemical kinetics model is shown for all conditions within the current study. The model and the data presented herein agree well, which demonstrates the continual, improved accuracy of the chemical kinetics model. A high-pressure shock tube was used to measure ignition delay times for several baseline compositions of syngas at three pressures across a wide range of temperatures. The compositions of syngas (H2/CO) by volume presented in this study included 80/20, 50/50, 40/60, 20/80, and 10/90, all of which are compared to previously published ignition delay times from a hydrogen-oxygen mixture to demonstrate the effect of carbon monoxide addition. Generally, an increase in carbon monoxide increases the ignition delay time, but there does seem to be a pressure dependency. At low temperatures and pressures higher than about 12 atm, the ignition delay times appear to be indistinguishable with an increase in carbon monoxide. However, at high temperatures the relative composition of H2 and CO has a strong influence on ignition delay times. Model agreement is good across the range of the study, particularly at the elevated pressures.


Author(s):  
Sandra Richter ◽  
Jörn Ermel ◽  
Thomas Kick ◽  
Marina Braun-Unkhoff ◽  
Clemens Naumann ◽  
...  

Currently, new concepts for power generation are discussed, as a response to combat global warming due to CO2 emissions stemming from the combustion of fossil fuels. These concepts include new, low-carbon fuels as well as centralized and decentralized solutions. Thus, a more diverse range of fuel supplies will be used, with (biogenic) low-caloric gases such as syngas and coke oven gas (COG) among them. Typical for theses low-caloric gases is the amount of hydrogen, with a share of 50% and even higher. However, hydrogen mixtures have a higher reactivity than natural gas (NG) mixtures, burned mostly in today's gas turbine combustors. Therefore, in the present work, a combined experimental and modeling study of nitrogen-enriched hydrogen–air mixtures, some of them with a share of methane, to be representative for COG, will be discussed focusing on laminar flame speed data as one of the major combustion properties. Measurements were performed in a burner test rig at ambient pressure and at a preheat temperature T0 of 373 K. Flames were stabilized at fuel–air ratios between about φ = 0.5–2.0 depending on the specific fuel–air mixture. This database was used for the validation of four chemical kinetic reaction models, including an in-house one, and by referring to hydrogen-enriched NG mixtures. The measured laminar flame speed data of nitrogen-enriched methane–hydrogen–air mixtures are much smaller than the ones of nitrogen-enriched hydrogen–air mixtures. The grade of agreement between measured and predicted data depends on the type of flames and the type of reaction model as well as of the fuel–air ratio: a good agreement was found in the fuel lean and slightly fuel-rich regime; a large underprediction of the measured data exists at very fuel-rich ratios (φ > 1.4). From the results of the present work, it is obvious that further investigations should focus on highly nitrogen-enriched methane–air mixtures, in particular for very high fuel–air ratio (φ > 1.4). This knowledge will contribute to a more efficient and a more reliable use of low-caloric gases for power generation.


Sign in / Sign up

Export Citation Format

Share Document