Study of Fuel Composition, Burner Material and Tip Temperature Effects on Flashback of Enclosed Jet Flame

Author(s):  
Zhixuan Duan ◽  
Brendan Shaffer ◽  
Vincent McDonell

Flashback is a key challenge for low NOx premixed combustion of high hydrogen content fuels. Previous work has systematically investigated the impact of fuel composition on flashback propensity, and noted that burner tip temperature played an important role on flashback, yet did not quantify any specific effect. The present work further investigates the coupling of flashback with burner tip temperature and leads to models for flashback propensity as a function of parameters studied. To achieve this, a jet burner configuration with interchangeable burner materials was developed along with automated flashback detection and rim temperature monitoring. An inline heater provides preheated air up to 810 K. Key observations include that for a given condition, tip temperature of a quartz burner at flashback is higher than that of a stainless burner. As a reasult, the flashback propensity of a quartz tube is about double of that of a stainless tube. A polynomial model based on analysis of variance is presented and shows that, if the tip temperature is introduced as a parameter, better correlations result. A physical model is developed and illustates that the critical velocity gradient is proportional to the laminar flame speed computed using the measured tip temperature. Addition of multiple parameters further refined the prediction of the flashback propensity, and the effects of materials are discussed qualitatively using a simple heat transfer analysis.

Author(s):  
Brendan Shaffer ◽  
Zhixuan Duan ◽  
Vincent McDonell

Flashback is the main operability issue associated with converting lean, premixed combustion systems from operation on natural gas to operation on high hydrogen content fuels. Most syngas fuels contain some amount of hydrogen (15–100%) depending on the fuel processing scheme. With this variability in the composition of syngas, the question of how fuel composition impacts flashback propensity arises. To address this question, a jet burner configuration was used to develop systematic data for a wide range of compositions under turbulent flow conditions. The burner consisted of a quartz burner tube confined by a larger quartz tube. The use of quartz allowed visualization of the flashback processes occurring. Various fuel compositions of hydrogen, carbon monoxide, and natural gas were premixed with air at equivalence ratios corresponding to constant adiabatic flame temperatures (AFT) of 1700 K and 1900 K. Once a flame was stabilized on the burner, the air flow rate would be gradually reduced while holding the AFT constant via the equivalence ratio until flashback occurred. Schlieren and intensified OH* images captured at high speeds during flashback allowed some additional understanding of what is occurring during the highly dynamic process of flashback. Confined and unconfined flashback data were analyzed by comparing data collected in the present study with existing data in the literature. A statistically designed test matrix was used which allows analysis of variance of the results to be carried out, leading to correlation between fuel composition and flame temperature with (1) critical flashback velocity gradient and (2) burner tip temperature. Using the burner tip temperature as the unburned temperature in the laminar flame speed calculations showed increased correlation of the flashback data and laminar flame speed as opposed to when the actual unburned gas temperature was used.


Author(s):  
Brendan Shaffer ◽  
Zhixuan Duan ◽  
Vincent McDonell

Flashback is the main operability issue associated with converting lean, premixed combustion systems from operation on natural gas to operation on high hydrogen content fuels. Most syngas fuels contain some amount of hydrogen (15–100%) depending on the fuel processing scheme. With this variability in the composition of syngas, the question of how fuel composition impacts flashback propensity arises. To address this question, a jet burner configuration was used to develop systematic data for a wide range of compositions under turbulent flow conditions. The burner consisted of a quartz burner tube confined by a larger quartz tube. The use of quartz allowed visualization of the flashback processes occurring. Various fuel compositions of hydrogen, carbon monoxide, and natural gas were premixed with air at equivalence ratios corresponding to constant adiabatic flame temperatures (AFT) of 1700 K and 1900 K. Once a flame was stabilized on the burner, the air flow rate would be gradually reduced while holding the AFT constant via the equivalence ratio until flashback occurred. Schlieren and intensified OH* images captured at high speeds during flashback allowed some additional understanding of what is occurring during the highly dynamic process of flashback. Confined and unconfined flashback data were analyzed by comparing data collected in the present study with existing data in the literature. A statistically designed test matrix was used which allows analysis of variance of the results to be carried out, leading to correlation between fuel composition and flame temperature with (1) critical flashback velocity gradient and (2) burner tip temperature. Using the burner tip temperature as the unburned temperature in the laminar flame speed calculations showed increased correlation of the flashback data and laminar flame speed as opposed to when the actual unburned gas temperature was used.


Author(s):  
Don Ferguson ◽  
Joseph A. Ranalli ◽  
Peter Strakey

This paper evaluates the impact of two strategies for reducing CO2 emissions on combustion instabilities in lean-premixed combustion. Exhaust gas recirculation can be utilized to increase the concentration of CO2 in the exhaust stream improving the efficiency in the post-combustion separation plant. This coupled with the use of coal derived syngas or hydrogen augmented natural gas can further decrease CO2 levels released into the environment. However, changes in fuel composition have been shown to alter the dynamic response in lean-premixed combustion systems. In this study, a fully premixed, swirl stabilized, atmospheric burner is operated on various blends of H2/CH4 fuels with N2 and CO2 dilution to simulate EGR. Acoustic pressure and velocity, and global heat release measurements were performed at fixed adiabatic flame temperatures to evaluate the impact of fuel composition and dilution on various mechanisms that drive the instabilities.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 369
Author(s):  
Filipe M. Quintino ◽  
Edgar C. Fernandes

The transition from natural gas to renewable gases such as biogas and hydrogen creates an interchangeability challenge. The laminar flame speed SL is a critical parameter in appliance design as it is a unique characteristic of the flame mixture. It is thus essential to evaluate the impact of renewable gases on SL. In this work, 1D simulations were conducted in Cantera with the USC-Mech 2.0 kinetic mechanism. The SL of three base biogas blends (BG100, BG90 and BG80) was computed for H2 enrichment up to 50% in volume, equivalence ratio 0.8≤ϕ≤1.0, p=1 atm and Tu=298 K. It was found that the effect of H2 enrichment is higher for base blends with higher CO2 content as the thermal-diffusive and dilution effects of carbon dioxide are mitigated by hydrogen. The introduction of H2 also increases the H radical pool, which is linked with the increase in SL. A new correlation to model the impact of H2 enrichment, SL(xH2)=ζ(ϕ)/SL′(xCO2)xH2exH2+SL′(xCO2), is proposed, which exhibits good agreement with the literature data and simulations. This equation can be directly used to estimate SL without the need for a priori adaptations of fit parameters as the contributions of CO2 and H2 are isolated in independent variables.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1894
Author(s):  
Li Yang ◽  
Wubin Weng ◽  
Yanqun Zhu ◽  
Yong He ◽  
Zhihua Wang ◽  
...  

Syngas produced by gasification, which contains a high hydrogen content, has significant potential. The variation in the hydrogen content and dilution combustion are effective means to improve the steady combustion of syngas and reduce NOx emissions. OH planar laser-induced fluorescence technology (OH-PLIF) was applied in the present investigation of the turbulence of a premixed flame of syngas with varied compositions of H2/CO. The flame front structure and turbulent flame velocities of syngas with varied compositions and turbulent intensities were analyzed and calculated. Results showed that the trend in the turbulent flame speed with different hydrogen proportions and dilutions was similar to that of the laminar flame speed of the corresponding syngas. A higher hydrogen proportion induced a higher turbulent flame speed, higher OH concentration, and a smaller flame. Dilution had the opposite effect. Increasing the Reynolds number also increased the turbulent flame speed and OH concentration. In addition, the effect of the turbulence on the combustion of syngas was independent of the composition of syngas after the analysis of the ratio between the turbulent flame speed and the corresponding laminar flame speed, for the turbulent flames under low turbulent intensity. These research results provide a theoretical basis for the practical application of syngas with a complex composition in gas turbine power generation.


Author(s):  
Zhixuan Duan ◽  
Alireza Kalantari ◽  
Vincent McDonell

Flashback is a key operability issue for low NOx premixed combustion of hydrogen enriched fuels. Previous work has systematically investigated the impact of fuel composition on flashback propensity and noted the coupling of flashback with burner tip temperature. It led to models for critical velocity gradient as an indicator of flashback propensity as a function of parameters studied, such as fuel composition, burner tip temperature and laminar flame speed, etc. The present work further analyzes existing data and develops an empirical physical model for flashback propensity as a function of dimensionless groups. A comprehensive parameter screening is conducted and the potential variables determining flashback behavior are catalogued into five types: operational parameters, unburnt conditions, ambient conditions, rig properties and others. The objective of the analysis is to predict the critical operational parameters with given unburnt conditions which are generally known to the hardware designer. Other factors, such as ambient conditions and rig properties might also affect the prediction performance. To account for such factors, a dimensional analysis is conducted based on Buckingham Pi theorem. The critical Damköhler number is selected as the indicator of flashback propensity and a model is developed suggesting the significance of preferential diffusion (Le), heat loss (TuT0), thermal coupling effect (TtipTu) and flame Péclet number (Pef) as follows: Da = Const. · Le -6.12 · T u T 0 -1.71 · T tip T u -3.69 Pe f 1.89 · f 1 θ ′ d · f 2 P u P 0 Finally, preliminary results for pressure effects are presented.


Author(s):  
Prabhakar Venkateswaran ◽  
Andrew D. Marshall ◽  
David R. Noble ◽  
Jerry M. Seitzman ◽  
Tim C. Lieuwen

This paper describes measurements and analysis of global turbulent consumption speeds, ST,GC, of hydrogen/carbon monoxide (H2/CO) mixtures. The turbulent flame properties of such mixtures are of fundamental interest because of their strong stretch sensitivity and of practical interest since they are the primary constituents of syngas fuels. Data are analyzed at mean flow velocities and turbulence intensities of 4 < U0 < 50 m/s and 1 < u′rms/SL,0 < 100, respectively, for H2/CO blends ranging from 30–90% H2 by volume. Data from two sets of experiments are reported. In the first, fuel blends ranging from 30–90% H2 and mixture equivalence ratio, Φ, were adjusted at each fuel composition to have nominally the same un-stretched laminar flame speed, SL,0. In the second set, equivalence ratios were varied at constant H2 levels. The data clearly corroborate results from other studies that show significant sensitivity of ST,GC to fuel composition. For example, at a fixed u′rms, ST,GC of a 90% H2 case (at Φ = 0.48) is a factor of three times larger than the baseline Φ = 0.9, CH4/air mixture that has the same SL,0 value. We also describe physics-based correlations of these data, using leading points concepts and detailed kinetic calculations of their stretch sensitivities. These results are used to develop an inequality for negative Markstein length flames that bounds the turbulent flame speed data and show that the data can be collapsed using the maximum stretched laminar flame speed, SL,max, rather than SL,0.


2019 ◽  
Vol 142 (6) ◽  
Author(s):  
Kelsey Fieseler ◽  
Taylor Linker ◽  
Mark Patterson ◽  
Daniel Rem ◽  
Timothy J. Jacobs

Abstract Two equations are developed to estimate laminar flame speed and ignition delay for different alkane mixtures at a range of engine-relevant conditions. Fuel mixtures of methane, ethane, propane, butane, and pentane were selected by analyzing the natural gas composition in a natural gas pipeline located in the Midwestern United States. The laminar flame speed and ignition delay were calculated for each mixture at each set of conditions using Cantera, a chemical kinetics solver. The range of initial conditions for laminar flame speed includes temperatures from 300 to 700 K, pressures from 1 to 40 bar, equivalence ratios from 0.4 to 1.2, and residual fractions from 0% to 20%. These data were then fit to a non-linear regression. The range of initial conditions for the ignition delay equation includes temperatures from 1100 to 2000 K, pressures from 1 to 40 bar, equivalence ratios from 0.4 to 1.15, and residual fractions from 0% to 20%. These data were fit to a previously developed equation. Sensitivity studies were conducted on each equation to quantify the impact of the independent variables on the target variable. This showed that, for laminar flame speed, the initial pressure, temperature, and equivalence ratio had the largest impact, with fuel composition having a lesser impact. For ignition delay, the temperature and pressure were shown to have the largest impact. There is a room for improvement, namely, increasing the fuel mixture variability and range of initial conditions, and developing a better fit to the data.


Sign in / Sign up

Export Citation Format

Share Document