Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage

2013 ◽  
Vol 135 (4) ◽  
Author(s):  
B. Khanal ◽  
L. He ◽  
J. Northall ◽  
P. Adami

The high pressure (HP) turbine is subject to inlet flow nonuniformities resulting from the combustor. A lean-burn combustor tends to combine temperature variations with strong swirl and, although considerable research efforts have been made to study the effects of a circumferential temperature nonuniformity (hot-streak), there is relatively little known about the interaction between the two. This paper presents a numerical investigation of the transonic test HP stage MT1 behavior under the combined influence of the swirl and hot-streak. The in house Rolls-Royce HYDRA numerical computational fluid dynamics (CFD) suite is used for all the simulations of the present study. Baseline configurations with either hot-streak or swirl at the stage inlet are analyzed to assess the methodology and to identify reference performance parameters through comparisons with the experimental data. Extensive computational analyses are then carried out for the cases with hot-streak and swirl combined, including both the effects of the combustor-nozzle guide vane (NGV) clocking and the direction of the swirl. The present results for the combined hot-streak and swirl cases reveal distinctive radial migrations of hot fluid in the NGV and rotor passages with considerable impact on the aerothermal performance. It is illustrated that the blade heat transfer characteristics and their dependence on the clocking position can be strongly affected by the swirl direction. A further computational examination is carried out on the validity of a superposition of the influences of swirl and hot-streak. It shows that the blade heat transfer in a combined swirl and hot-streak case cannot be predicted by the superposition of each in isolation.

Author(s):  
B. Khanal ◽  
L. He ◽  
J. Northall ◽  
P. Adami

The high pressure (HP) turbine is subject to inlet flow non-uniformities resulting from the combustor. A lean-burn combustor tends to combine temperature variations with strong swirl and, although considerable research efforts have been made to study the effects of a circumferential temperature non-uniformity (hot-streak), there is relatively little known about the interaction between the two. This paper presents a numerical investigation of the transonic test HP stage MT1 behaviour under the combined influence of the swirl and hot-streak. The in house Rolls-Royce HYDRA numerical CFD suite is used for all the simulations of the present study. Baseline configurations with either hot-streak or swirl at the stage inlet are analyzed to assess the methodology and to identify reference performance parameters through comparisons with the experimental data. Extensive computational analyses are then carried out for the cases with hot-streak and swirl combined including both the effects of the combustor-NGV clocking and the direction of the swirl. The present results for the combined hot-streak and swirl cases reveal distinctive radial migrations of hot fluid in the NGV and rotor passages with considerable impact on the aerothermal performance. It is illustrated that the blade heat transfer characteristics and their dependence on the clocking position can be strongly affected by the swirl direction. A further computational examination is carried out on the validity of a superposition of the influences of swirl and hot-streak. It shows that the blade heat transfer in a combined swirl and hot-streak case cannot be predicted by the superposition of each in isolation.


Author(s):  
Prasert Prapamonthon ◽  
Bo Yin ◽  
Guowei Yang ◽  
Mohan Zhang

Abstract To obtain high power and thermal efficiency, the 1st stage nozzle guide vanes of a high-pressure turbine need to operate under serious circumstances from burned gas coming out of combustors. This leads to vane suffering from effects of high thermal load, high pressure and turbulence, including flow-separated transition. Therefore, it is necessary to improve vane cooling performance under complex flow and heat transfer phenomena caused by the integration of these effects. In fact, these effects on a high-pressure turbine vane are controlled by several factors such as turbine inlet temperature, pressure ratio, turbulence intensity and length scale, vane curvature and surface roughness. Furthermore, if the vane is cooled by film cooling, hole configuration and blowing ratio are important factors too. These factors can change the aerothermal conditions of the vane operation. The present work aims to numerically predict sensitivity of cooling performances of the 1st stage nozzle guide vane under aerodynamic and thermal variations caused by three parameters i.e. pressure ratio, coolant inlet temperature and height of vane surface roughness using Computational Fluid Dynamics (CFD) with Conjugate Heat Transfer (CHT) approach. Numerical results show that the coolant inlet temperature and the vane surface roughness parameters have significant effects on the vane temperature, thereby affecting the vane cooling performances significantly and sensitively.


Author(s):  
L. He ◽  
V. Menshikova ◽  
B. R. Haller

A computational study is carried out on the influence of turbine inlet temperature distortion (hot streak). The hot streak effects are examined from both aeromechanical (forced blade vibration) and aero-thermal (heat transfer) points of view. Computations are firstly carried out for a transonic HP turbine stage, and the steady and unsteady surface pressure results are compared with the corresponding experimental data. Subsequent analysis is carried out for hot-streaks with variable circumferential wavelength, corresponding to different numbers of combustion burners. The results show that the circumferential wavelength of the temperature distortion can significantly change unsteady forcing as well as the heat-transfer to rotor blades. In particular, when the hot-streak wavelength is the same as the nozzle guide vane (NGV) blade pitch, there is a strong dependence of the preferential heating characteristics on the relative clocking position between hot-streak and NGV blade. However, this clocking dependence is shown to be qualitatively weakened for the cases with fewer hot streaks with longer circumferential wavelengths.


Author(s):  
A. Rahim ◽  
L. He

A key consideration in high pressure (HP) turbine designs is the heat load experienced by rotor blades. Impact of turbine inlet nonuniformity of combined temperature and velocity traverses, typical for a lean-burn combustor exit, has rarely been studied. For general turbine aerothermal designs, it is also of interest to understand how the behavior of lean-burn combustor traverses (with both hot-streak and swirl) might contrast with those for a rich-burn combustor (largely hot-streak only). In the present work, a computational study has been carried out on the aerothermal performance of a HP turbine stage under nonuniform temperature and velocity inlet profiles. The analyses are primarily conducted for two combined hot-streak and swirl inlets, with opposite swirl directions. In addition, comparisons are made against a hot-streak only case and a uniform inlet. The effects of three nozzle guide vane (NGV) shape configurations are investigated: straight, compound lean (CL) and reverse CL (RCL). The present results reveal a qualitative change in the roles played by heat transfer coefficient (HTC) and fluid driving (“adiabatic wall”) temperature, Taw. It has been shown that the blade heat load for a uniform inlet is dominated by HTC, whilst a hot-streak only case is largely influenced by Taw. However, in contrast to the hot-streak only case, a combined hot-streak and swirl case shows a role reversal with the HTC being a dominant factor. Additionally, it is seen that the swirling flow redistributes radially the hot fluid within the NGV passage considerably, leading to a much ‘flatter’ rotor inlet temperature profile compared to its hot-streak only counterpart. Furthermore, the rotor heat transfer characteristics for the combined traverses are shown to be strongly dependent on the NGV shaping and the inlet swirl direction, indicating a potential for further design space exploration. The present findings underline the need to clearly define relevant combustor exit temperature and velocity profiles when designing and optimizing NGVs for HP turbine aerothermal performance.


1990 ◽  
Vol 112 (3) ◽  
pp. 512-520 ◽  
Author(s):  
T. Arts ◽  
A. E. Bourguignon

The purpose of this paper is to quantify the influence on external convective heat transfer of a coolant film whose position varies along the pressure side of a high-pressure turbine nozzle guide vane. The measurements were performed in the short-duration Isentropic Light Piston Compression Tube facility of the von Karman Institute. The effects of external and internal flow are considered in terms of Mach number, Reynolds number, free-stream turbulence intensity, blowing rate, and coolant to free-stream temperature ratio. The way to evaluate these results in terms of film cooling efficiency and heat transfer coefficient is finally discussed.


2013 ◽  
Vol 136 (7) ◽  
Author(s):  
A. Rahim ◽  
B. Khanal ◽  
L. He ◽  
E. Romero

One of the most widely studied parameters in turbine blade shaping is blade lean, i.e., the tangential displacement of spanwise sections. However, there is a lack of published research that investigates the effect of blade lean under nonuniform temperature conditions (commonly referred to as a “hot-streak”) that are present at the combustor exit. Of particular interest is the impact of such an inflow temperature profile on heat transfer when the nozzle guide vane (NGV) blades are shaped. In the present work, a computational study has been carried out for a transonic turbine stage using an efficient unsteady Navier–Stokes solver (HYDRA). The configurations with a nominal vane and a compound leaned vane under uniform and hot-streak inlet conditions are analyzed. After confirming the typical NGV loading and aeroloss redistributions as seen in previous literature on blade lean, the focus has been directed to the rotor aerothermal behavior. While the overall stage efficiencies for the configurations are largely comparable, the results show strikingly different rotor heat transfer characteristics. For a uniform inlet, a leaned NGV has a detrimental effect on the rotor heat transfer. However, once the hot-streak is introduced, the trend is reversed; the leaned NGV leads to favorable heat transfer characteristics in general and for the rotor tip region in particular. The possible causal links for the observed aerothermal features are discussed. The present findings also highlight the significance of evaluating NGV shaping designs under properly conditioned inflow profiles, rather than extrapolating the wisdom derived from uniform inlet cases. The results also underline the importance of including rotor heat transfer and coolability during the NGV design process.


2009 ◽  
Vol 22 (3) ◽  
pp. 230-236 ◽  
Author(s):  
Wang Qiang ◽  
Guo Zhaoyuan ◽  
Zhou Chi ◽  
Feng Guotai ◽  
Wang Zhongqi

Author(s):  
T. Arts ◽  
A. E. Bourguignon

The purpose of this paper is to quantify the influence on external convective heat transfer of a coolant film whose position varies along the pressure side of a high pressure turbine nozzle guide vane. The measurements were performed in the short duration Isentropic Light Piston Compression Tube facility of the von Karman Institute. The effects of external and internal flow are considered in terms of Mach number, Reynolds number, freestream turbulence intensity, blowing rate and coolant to freestream temperature ratio. The way to evaluate these results in terms of film cooling efficiency and heat transfer coefficient is finally discussed.


Author(s):  
A. Rahim ◽  
L. He ◽  
E. Romero

One of the key considerations in high pressure (HP) turbine design is the heat load experienced by rotor blades. The impact of turbine inlet non-uniformities on the blades in the form of combined temperature and velocity traverses, typical for a lean burn combustor exit, has rarely been studied. For general HP turbine aerothermal designs, it is also of interest to understand how the behavior of a lean burn combustor traverses (hot streak and swirl) might contrast with those for rich burn combustion (largely hot streak only). In the present work, a computational study has been carried out on the aerothermal performance of a HP turbine stage under non-uniform temperature and velocity inlet profiles. The analyses are primarily conducted for two combined hot streak and swirl inlets, with opposite swirl directions. In addition, comparisons are made against a hot streak only case and a uniform inlet. The effects of three NGV shape configurations are investigated; namely, straight, compound lean (CL) and reverse compound lean (RCL). The present results show that there is a qualitative change in the roles played by heat transfer coefficient (HTC) and fluid driving (‘adiabatic wall’) temperature, Taw. It has been shown that the blade heat load distribution for a uniform inlet is dominated by HTC, whilst for a hot streak only case it is wholly influenced by Taw. However, in contrast to the hot streak only case, the case with a combined hot streak and swirl shows a role reversal with the HTC being dominant in determining the heat load. Additionally, it is seen that the swirling flow radially redistributes the hot fluid within the NGV passage considerably, leading to a much ‘flatter’ rotor inlet temperature profile compared to its hot streak only counterpart. Further, the rotor heat transfer characteristics for the cases with the combined traverses are shown to be strongly dependent on the NGV shaping and the inlet swirl direction, indicating the potential for future design space exploration. The present findings underline the need to clearly define relevant combustor exit temperature and velocity profiles when designing and optimizing NGVs for HP turbine aerothermal performance.


Sign in / Sign up

Export Citation Format

Share Document