Bending of Isotropic Thin Plates by Concentrated Edge Couples and Forces

1954 ◽  
Vol 21 (2) ◽  
pp. 129-139
Author(s):  
Yi-Yuan Yu

Abstract In this paper the complex variable method of Muschelišvili for solving the biharmonic equation is applied to problems of bending of isotropic thin plates by concentrated edge couples and forces. The results of the method as applied to plate problems by previous authors are presented first. Methods of handling concentrated edge couples and forces are developed. These are then applied to the circular plate as an example, for which exact solutions in closed forms are obtained. Worked out in detail are three particular problems; namely, those of circular plates subjected, respectively, to two bending couples, to two twisting couples, both applied at the ends of a diameter, and to four forces applied at the ends of two diameters perpendicular to each other. Numerical results are presented in the form of graphs.

Author(s):  
W. A. Bassali ◽  
R. H. Dawoud

ABSTRACTThe complex variable method is applied to obtain solutions for the deflexion of a supported circular plate with uniform line loading along an eccentric circle under a general boundary condition including the clamped boundary , a boundary with zero peripheral couple , a boundary with equal boundary cross-couples , a hinged boundary and a boundary for which , η being Poisson's ratio. These solutions are used to obtain the deflexion at any point of a circular plate having an eccentric circular patch symmetrically loaded with respect to its centre. Expressions for the slope and cross-couples over the boundary and the deflexions at the centres of the plate and the loaded patch are obtained.


AIAA Journal ◽  
2006 ◽  
Vol 44 (12) ◽  
pp. 2958-2961 ◽  
Author(s):  
B. P. Wang ◽  
A. P. Apte

1954 ◽  
Vol 21 (3) ◽  
pp. 263-270
Author(s):  
S. Woinowsky-Krieger

Abstract A solution is given in this paper for the problem of bending of an infinite flat slab loaded uniformly and rigidly clamped in square-shaped columns arranged to form the square panels of the slab. The complex variable method in connection with conformal mapping is used for this aim. Although not perfectly rigorous, the solution obtained is sufficiently accurate for practical purposes and, besides, it can be improved at will. Stress diagrams traced in a particular case of column dimensions do not wholly confirm the stress distribution, generally accepted in design of flat slabs.


1958 ◽  
Vol 25 (4) ◽  
pp. 571-574
Author(s):  
Masaichiro Seika

Abstract This paper contains a solution for the stress distribution in a thick cylinder having a square hole with rounded corners under the condition of concentrated loading. The problem is investigated by the complex-variable method, associated with the name of N. I. Muskhelishvili. The unknown coefficients included in the solution are determined by the method of perturbation. Numerical examples of the solution are worked out and compared with the results available.


1982 ◽  
Vol 49 (1) ◽  
pp. 243-245 ◽  
Author(s):  
B. Banerjee

The large deflection of a clamped circular plate of variable thickness under uniform load has been investigated using von Karman’s equations. Numerical results obtained for the deflections and stresses at the center of the plate have been given in tabular forms.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xingbo Han ◽  
Yongxu Xia ◽  
Xing Wang ◽  
Lunlei Chai

A complex variable method for solving the forces and displacements of circular lined tunnels is presented. Complex potentials for the stresses and displacements are expressed in the term of series expression. The undetermined coefficients of the complex potentials are obtained according to the stress boundary conditions along the lining inner surface and the displacement and surface traction boundary condition along the lining and rock-mass interface. Solutions for the stresses and displacements of the tunnel lining and rock-mass are then established by applying Muskhekishvili’s complex variable method. In addition, forces solutions for linings are presented based on the tangential stress at the two boundaries. Examples are finally established to reveal the applicability and accuracy of the proposed method. The effects of the degrees from the tunnel crown to the invert, coefficient of the lateral earth pressure, and distance from the rock-mass to the interface on the regulations of the lining forces and rock-mass stresses are also thoroughly investigated.


Sign in / Sign up

Export Citation Format

Share Document