On the Use of Shape Memory Alloy Studs to Recover Load Loss in Bolted Joints

2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Nazim Ould-Brahim ◽  
Abdel-Hakim Bouzid ◽  
Vladimir Brailovski

Creep is an important factor that contributes to the clamp load loss and tightness failure of bolted joints with and without gaskets over time. Retightening of the joint can be expensive and time consuming; therefore, it is an undesirable solution. Currently, most efforts are put towards reducing load losses directly by tightening to yield, improving material creep properties, or making joint less rigid. An alternative solution of current interest is the use of bolts in shape memory alloys (SMAs). However, very few experimental studies are available, which demonstrate the feasibility of these alloys. The objective of this study is to explore the benefit of shape memory and superelasticity behavior of an SMA stud to recover load losses due to creep and thermal exposure of a gasket in a bolted-joint assembly. This paper explores several venues to investigate and model the thermomechanical behavior of a bolted joint with a nickel–titanium SMA stud. A stiffness-based analytical model which incorporates the Likhachev model of SMA is used as a representation of an experimental bolted-joint assembly. Based on this model, the rigidity of the experimental setup is optimized to make the best use of the SMA properties of the stud. This analytical model is compared with a finite element model, which also implements the Likhachev's material law. Finally, an experimental test bench with a relatively low stiffness representative of standard flanges is used, with and without gaskets to demonstrate the ability of the SMA stud to recover load losses due to gasket creep.

Author(s):  
Nazim Ould-Brahim ◽  
Abdel-Hakim Bouzid ◽  
Vladimir Brailovski

Creep is an important factor that contributes to the clamp load loss and tightness failure of bolted joints. Retightening of the joint can be expensive, time consuming and therefore is an undesirable solution. Currently, most efforts are put towards reducing load losses directly by tightening to yield, improving material creep properties or making joint less rigid. An alternative solution of current interest is the use of bolts in Shape Memory Alloys (SMA). However very few experimental studies are available that demonstrates its feasibility. The objective of this study is to exploit the benefit of the shape memory and superelasticity behaviors of a SMA stud to recover the load losses due to creep and thermal exposure of a gasket in a bolted joint assembly. This paper explores several venues to investigate and model the thermo-mechanical properties of a bolted joint with a nickel-titanium SMA stud. A stiffness-based analytical model which incorporates the Likhachev model of SMA is used as a representation of an experimental bolted joint assembly. Using this model, the rigidity of the experimental setup is optimized to make the best use of the SMA properties of the stud. This analytical model is compared with a Finite Element Model which also implements the Likhachev’s material law. Finally an experimental test bench with a relatively low stiffness representative of EN and JIS flanges is used, with and without gaskets to demonstrate the ability of the SMA stud to recover load losses due to gasket creep.


2021 ◽  
Author(s):  
Rashique Iftekhar Rousseau ◽  
Abdel-Hakim Bouzid ◽  
Zijian Zhao

Abstract The axial stiffnesses of the bolt and clamped members of bolted joints are of great importance when considering their integrity and capacity to withstand external loads and resist relaxation due to creep. There are many techniques to calculate the stiffnesses of the joint elements using finite element (FE) modeling, but most of them are based on the displacement of nodes that are selected arbitrarily; therefore, leading to inaccurate values of joint stiffness. This work suggests a new method to estimate the stiffnesses of the bolt and clamped members using FE analysis and compares the results with the FE methods developed earlier and also with the existing analytical models. A new methodology including an axisymmetric finite element model of the bolted joint is proposed in which the bolts of different sizes ranging from M6 to M36 are considered for the analysis to generalize the proposed approach. The equivalent bolt length that includes the contribution of the thickness of the bolt head and the bolt nominal diameter to the bolt stiffness is carefully investigated. An equivalent bolt length that accounts for the flexibility of the bolt head is proposed in the calculation of the bolt stiffness and a new technique to accurately determine the stiffness of clamped members are detailed.


2015 ◽  
Vol 656-657 ◽  
pp. 694-699
Author(s):  
Xin Liao ◽  
Jian Run Zhang ◽  
Dong Lu

In this study, a non-linear finite element model for a simplified single-bolted joint structure model is built. Static analysis on the structure under different shear force and pretension effect is done, and the non-linear contact behavior is analyzed. Through comparing datum, it is found that interface area of each bolted joint region can be described an annular region around bolt hole, whose outer radius has increased by 85% compared with radius of bolt hole. Also, the frequency responses of the multi-bolted joint structure under sinusoidal excitation are investigated. Simulation results show that the resonance regions basically remain unchanged in different pretension effect and the largest amplitude will increase with the increasing preloads. Finally, the vibration experiments are conducted. Interface nonlinear affect dynamic stiffness considerably. The test results illustrate that dynamic behaviors of bolted joint agree with the simulation results and the proposed non-linear contact model was reasonable.


Author(s):  
A. Fitzgerald (Jerry) Waterland ◽  
David Lay ◽  
Michael Dodge

Why do we certify welders but require no evidence of training or competence from those performing the critical bolted flanged joint assembly of pressure vessels and piping throughout the same industries? To remedy this situation ASME has recently released the first comprehensive standard in ASME PCC-1-2013 Appendix A that establishes uniform criteria, not just for the quality of the bolted joints but for the workers who assemble them. To support this critical training and qualification standard, ASME Training & Development has created a unique blended learning program for pipe fitters and mechanics to become Qualified Bolting Specialists (QBS), per the requirements outlined in PCC-1-2013 Appendix A. The purpose of this technical presentation is to explain the opportunities presented by this new standard and how industry can benefit from a better-trained work force in this critical area of bolted joint assembly. The authors have been integrally involved in the development of both the PCC-1 guideline document, and the ASME qualification program, and can authoritatively answer industry’s questions.


2010 ◽  
Vol 118-120 ◽  
pp. 147-150
Author(s):  
Da Zhao Yu ◽  
Yue Liang Chen ◽  
Yong Gao ◽  
Wen Lin Liu ◽  
Zhong Hu Jia

Three-dimensional finite element model of a cracked bolted joint has been developed in the non-linear finite element code MSC.Marc and attempts were made to validate it by comparing results with those of experiments and other finite element. Issues in modeling the contact between the joint parts, which affect the accuracy and efficiency of the model, were presented. Experimental measurements of load transfer were compared with results from finite element analysis. The results show that three-dimensional finite element model of cracked bolted joint can produce results in close agreement with experiment. Three-dimensional effects such as bolt titling, seconding and through-thickness variations in stress and strain are well represented by such models. Three-dimensional finite element analysis was also used to study the effects of hole mod and crack on the load transfer behaviour of single lap bolted joints. The results show that hole mode has big effect on load transfer of cracked bolted joint. In the whole progress of crack growth, the load transfer through bolt 1 decrease, and almost all of the load duduction of bolt 1 transfer into blot 2 rather than into bolt 3.


2020 ◽  
Vol 27 (1) ◽  
pp. 126-133
Author(s):  
Paweł Grudziński ◽  
Konrad Konowalski

AbstractThis article is Part II of the paper containing a description and results of the experimental studies of the deformations, friction processes and structural damping that occur in the foundation bolted joints of propulsion plant components and auxiliary machinery installed on sea-going ships. Part I of this research work presents an analysis of the rigid mountings of machines and devices to the foundations on steel or resin chocks, and explains the need to carry out relevant research in this area. It also presents the description and results of experimental studies carried out for a foundation bolted joint with a conventionally used steel chock. Part II (this article) contains a description and results of similar studies carried out for a foundation bolted joint with a modern chock – cast from epoxy resin compound (EPY), specially developed for this purpose. Then, a comparative analysis of the results obtained for both bolted joints in question was made and the foundation chocks of the poured-in-place resin compound were demonstrated to better fulfill their technical tasks than the steel chocks traditionally used for this purpose.


2013 ◽  
Vol 652-654 ◽  
pp. 1509-1513
Author(s):  
Tao Huang ◽  
Zhe Su

An experimental investigation was conducted to determine the bearing stress of single-lap double bolted composite joints. The bearing stress of a group of specimen was presented and the relationship between the stress and strain was obtained. The experimental results show that the damage of the bolted joints was a progressive process; and the ultimate bearing stress depends not only on the laminates’ strength but also on the bolt strength. A finite element model was created based on the bolted joint specimen to simulate the loading – displacement response. The numerical results verified the experiment results qualitatively.


2010 ◽  
Vol 97-101 ◽  
pp. 3924-3927 ◽  
Author(s):  
Da Zhao Yu ◽  
Yue Liang Chen ◽  
Zhong Hu Jia ◽  
Yong Gao ◽  
Wen Lin Liu

Three-dimensional finite element model of a bolted joint has been developed in the non-linear finite element code MSC.Marc and attempts were made to validate it by comparing results with those of experiments and other finite element. Issues in modeling the contact between the joint parts, which affect the accuracy and efficiency of the model, were presented. Experimental measurements of surface strains and load transfer ratio(LTR) were compared with results from finite element analysis. The results show that three-dimensional finite element model of bolted joint can produce results in close agreement with experiment. Three-dimensional effects such as bolt titling, seconding and through-thickness variations in stress and strain are well represented by such models. Three-dimensional finite element analysis was also used to study the effects of different parameters on the mechanical behaviour of single lap bolted joints. The results show that straight hole, small bolt diameter, and big hole pitch are selected first for bolted joint if other conditions allowed, and effect of bolt material on LTR of joint is small for small load. Interference and pre-stress should be strictly controlled for bolted joints in order to attain the best fatigue capability of lap joint.


Author(s):  
Clyde Neely ◽  
Clay Rodery

ASME PCC-1 “Guidelines for Pressure Boundary Bolted Joint Assembly” was first published in 2000 [1]. Since that time, there have been advances in bolted joint technology and industry practices that necessitated an update of the original document. The new revision of PCC-1 [2] is over twice the length of the original document and contains many new and updated guidelines. Significant additional detail has been added to the document in an effort to provide the broadest possible array of bolted joint assembly considerations to cover situations commonly encountered in industry, and thereby improve the overall safety and performance of bolted joints. This paper identifies some of the notable changes/additions that are included in the updated document.


Author(s):  
Warren Brown

This paper details the results of recent testing and experience into the assembly of bolted joints. Pressure boundary bolted joint assembly procedures are examined and details are presented that result in a reduction in the required effort to assemble any given joint by more than 50%. The selection of correct assembly load levels is addressed and suggestions for joint integrity improvement are made. Experimental results are also presented on the use of bolt lubricants and the effect of temperature on the lubricant properties.


Sign in / Sign up

Export Citation Format

Share Document